ChatPaper.aiChatPaper

ABot-N0: Technischer Bericht zum VLA-Foundation-Model für vielseitige verkörperte Navigation

ABot-N0: Technical Report on the VLA Foundation Model for Versatile Embodied Navigation

February 12, 2026
papers.authors: Zedong Chu, Shichao Xie, Xiaolong Wu, Yanfen Shen, Minghua Luo, Zhengbo Wang, Fei Liu, Xiaoxu Leng, Junjun Hu, Mingyang Yin, Jia Lu, Yingnan Guo, Kai Yang, Jiawei Han, Xu Chen, Yanqing Zhu, Yuxiang Zhao, Xin Liu, Yirong Yang, Ye He, Jiahang Wang, Yang Cai, Tianlin Zhang, Li Gao, Liu Liu, Mingchao Sun, Fan Jiang, Chiyu Wang, Zhicheng Liu, Hongyu Pan, Honglin Han, Zhining Gu, Kuan Yang, Jianfang Zhang, Di Jing, Zihao Guan, Wei Guo, Guoqing Liu, Di Yang, Xiangpo Yang, Menglin Yang, Hongguang Xing, Weiguo Li, Mu Xu
cs.AI

papers.abstract

Embodied Navigation war lange Zeit durch aufgabenspezifische Architekturen fragmentiert. Wir stellen ABot-N0 vor, ein einheitliches Vision-Language-Action (VLA)-Foundation-Modell, das eine „Große Vereinheitlichung“ über fünf Kernaufgaben erreicht: Point-Goal, Object-Goal, Instruction-Following, POI-Goal und Person-Following. ABot-N0 nutzt eine hierarchische „Brain-Action“-Architektur, die einen LLM-basierten kognitiven „Cognitive Brain“ für semantisches Reasoning mit einem auf Flow Matching basierenden „Action Expert“ für die Erzeugung präziser, kontinuierlicher Trajektorien kombiniert. Um großskaliges Lernen zu ermöglichen, entwickelten wir die ABot-N0 Data Engine, die 16,9 Mio. Expertentrajektorien und 5,0 Mio. Reasoning-Samples in 7.802 hochauflösenden 3D-Szenen (10,7 km²) kuratiert. ABot-N0 erreicht neue State-of-the-Art-Leistungen in 7 Benchmarks und übertrifft spezialisierte Modelle deutlich. Darüber hinaus integriert unser Agentic Navigation System einen Planner mit hierarchischem topologischem Gedächtnis, das robuste, langfristige Missionen in dynamischen realen Umgebungen ermöglicht.
English
Embodied navigation has long been fragmented by task-specific architectures. We introduce ABot-N0, a unified Vision-Language-Action (VLA) foundation model that achieves a ``Grand Unification'' across 5 core tasks: Point-Goal, Object-Goal, Instruction-Following, POI-Goal, and Person-Following. ABot-N0 utilizes a hierarchical ``Brain-Action'' architecture, pairing an LLM-based Cognitive Brain for semantic reasoning with a Flow Matching-based Action Expert for precise, continuous trajectory generation. To support large-scale learning, we developed the ABot-N0 Data Engine, curating 16.9M expert trajectories and 5.0M reasoning samples across 7,802 high-fidelity 3D scenes (10.7 km^2). ABot-N0 achieves new SOTA performance across 7 benchmarks, significantly outperforming specialized models. Furthermore, our Agentic Navigation System integrates a planner with hierarchical topological memory, enabling robust, long-horizon missions in dynamic real-world environments.
PDF20February 14, 2026