Daily curated AI research papers with translations
We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs including real-world in-the-wild captures and images from generative models. Video demos and interactable 3D meshes can be found on this website: https://yiconghong.me/LRM/.
Despite Multi-modal Large Language Models (MM-LLMs) have made exciting strides recently, they are still struggling to efficiently model the interactions among multi-modal inputs and the generation in non-textual modalities. In this work, we propose TEAL (Tokenize and Embed ALl)}, an approach to treat the input from any modality as a token sequence and learn a joint embedding space for all modalities. Specifically, for the input from any modality, TEAL first discretizes it into a token sequence with the off-the-shelf tokenizer and embeds the token sequence into a joint embedding space with a learnable embedding matrix. MM-LLMs just need to predict the multi-modal tokens autoregressively as the textual LLMs do. Finally, the corresponding de-tokenizer is applied to generate the output in each modality based on the predicted token sequence. With the joint embedding space, TEAL enables the frozen LLMs to perform both understanding and generation tasks involving non-textual modalities, such as image and audio. Thus, the textual LLM can just work as an interface and maintain its high performance in textual understanding and generation. Experiments show that TEAL achieves substantial improvements in multi-modal understanding, and implements a simple scheme for multi-modal generations.
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance the level of visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pixel2seq). In this paper, we introduce a novel paradigm for object location modeling called pixel2emb method, where we ask the LMM to output the location embeddings and then decoded by different decoders. This paradigm allows for different location formats (such as bounding boxes and masks) to be used in multimodal conversations Furthermore, this kind of embedding based location modeling enables the utilization of existing practices in localization tasks, such as detection and segmentation. In scenarios with limited resources, our pixel2emb demonstrates superior performance compared to existing state-of-the-art (SOTA) approaches in both the location input and output tasks under fair comparison. Leveraging the proposed pixel2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region caption, and grounded reasoning.
The stunning qualitative improvement of recent text-to-image models has led to their widespread attention and adoption. However, we lack a comprehensive quantitative understanding of their capabilities and risks. To fill this gap, we introduce a new benchmark, Holistic Evaluation of Text-to-Image Models (HEIM). Whereas previous evaluations focus mostly on text-image alignment and image quality, we identify 12 aspects, including text-image alignment, image quality, aesthetics, originality, reasoning, knowledge, bias, toxicity, fairness, robustness, multilinguality, and efficiency. We curate 62 scenarios encompassing these aspects and evaluate 26 state-of-the-art text-to-image models on this benchmark. Our results reveal that no single model excels in all aspects, with different models demonstrating different strengths. We release the generated images and human evaluation results for full transparency at https://crfm.stanford.edu/heim/v1.1.0 and the code at https://github.com/stanford-crfm/helm, which is integrated with the HELM codebase.
We present 3DiffTection, a state-of-the-art method for 3D object detection from single images, leveraging features from a 3D-aware diffusion model. Annotating large-scale image data for 3D detection is resource-intensive and time-consuming. Recently, pretrained large image diffusion models have become prominent as effective feature extractors for 2D perception tasks. However, these features are initially trained on paired text and image data, which are not optimized for 3D tasks, and often exhibit a domain gap when applied to the target data. Our approach bridges these gaps through two specialized tuning strategies: geometric and semantic. For geometric tuning, we fine-tune a diffusion model to perform novel view synthesis conditioned on a single image, by introducing a novel epipolar warp operator. This task meets two essential criteria: the necessity for 3D awareness and reliance solely on posed image data, which are readily available (e.g., from videos) and does not require manual annotation. For semantic refinement, we further train the model on target data with detection supervision. Both tuning phases employ ControlNet to preserve the integrity of the original feature capabilities. In the final step, we harness these enhanced capabilities to conduct a test-time prediction ensemble across multiple virtual viewpoints. Through our methodology, we obtain 3D-aware features that are tailored for 3D detection and excel in identifying cross-view point correspondences. Consequently, our model emerges as a powerful 3D detector, substantially surpassing previous benchmarks, e.g., Cube-RCNN, a precedent in single-view 3D detection by 9.43\% in AP3D on the Omni3D-ARkitscene dataset. Furthermore, 3DiffTection showcases robust data efficiency and generalization to cross-domain data.
Recent works have shown that Large Language Models (LLMs) could empower traditional neuro-symbolic models via programming capabilities to translate language into module descriptions, thus achieving strong visual reasoning results while maintaining the model's transparency and efficiency. However, these models usually exhaustively generate the entire code snippet given each new instance of a task, which is extremely ineffective. We propose generative neuro-symbolic visual reasoning by growing and reusing modules. Specifically, our model consists of three unique stages, module initialization, module generation, and module execution. First, given a vision-language task, we adopt LLMs to examine whether we could reuse and grow over established modules to handle this new task. If not, we initialize a new module needed by the task and specify the inputs and outputs of this new module. After that, the new module is created by querying LLMs to generate corresponding code snippets that match the requirements. In order to get a better sense of the new module's ability, we treat few-shot training examples as test cases to see if our new module could pass these cases. If yes, the new module is added to the module library for future reuse. Finally, we evaluate the performance of our model on the testing set by executing the parsed programs with the newly made visual modules to get the results. We find the proposed model possesses several advantages. First, it performs competitively on standard tasks like visual question answering and referring expression comprehension; Second, the modules learned from one task can be seamlessly transferred to new tasks; Last but not least, it is able to adapt to new visual reasoning tasks by observing a few training examples and reusing modules.