Daily curated AI research papers with translations
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
From professional filmmaking to user-generated content, creators and consumers have long recognized that the power of video depends on the harmonious integration of what we hear (the video's audio track) with what we see (the video's image sequence). Current approaches to video generation either ignore sound to focus on general-purpose but silent image sequence generation or address both visual and audio elements but focus on restricted application domains such as re-dubbing. We introduce Mirage, an audio-to-video foundation model that excels at generating realistic, expressive output imagery from scratch given an audio input. When integrated with existing methods for speech synthesis (text-to-speech, or TTS), Mirage results in compelling multimodal video. When trained on audio-video footage of people talking (A-roll) and conditioned on audio containing speech, Mirage generates video of people delivering a believable interpretation of the performance implicit in input audio. Our central technical contribution is a unified method for training self-attention-based audio-to-video generation models, either from scratch or given existing weights. This methodology allows Mirage to retain generality as an approach to audio-to-video generation while producing outputs of superior subjective quality to methods that incorporate audio-specific architectures or loss components specific to people, speech, or details of how images or audio are captured. We encourage readers to watch and listen to the results of Mirage for themselves (see paper and comments for links).
Advancements in diffusion models have significantly improved video quality, directing attention to fine-grained controllability. However, many existing methods depend on fine-tuning large-scale video models for specific tasks, which becomes increasingly impractical as model sizes continue to grow. In this work, we present Frame Guidance, a training-free guidance for controllable video generation based on frame-level signals, such as keyframes, style reference images, sketches, or depth maps. For practical training-free guidance, we propose a simple latent processing method that dramatically reduces memory usage, and apply a novel latent optimization strategy designed for globally coherent video generation. Frame Guidance enables effective control across diverse tasks, including keyframe guidance, stylization, and looping, without any training, compatible with any video models. Experimental results show that Frame Guidance can produce high-quality controlled videos for a wide range of tasks and input signals.
Creating machines capable of understanding the world in 3D is essential in assisting designers that build and edit 3D environments and robots navigating and interacting within a three-dimensional space. Inspired by advances in language and image modeling, we investigate the potential of autoregressive models for a new modality: structured 3D scenes. To this end, we propose a unified LLM framework that aligns language, images, and 3D scenes and provide a detailed ''cookbook'' outlining critical design choices for achieving optimal training and performance addressing key questions related to data representation, modality-specific objectives, and more. We evaluate performance across four core 3D tasks -- rendering, recognition, instruction-following, and question-answering -- and four 3D datasets, synthetic and real-world. We extend our approach to reconstruct complex 3D object shapes by enriching our 3D modality with quantized shape encodings, and show our model's effectiveness on real-world 3D object recognition tasks. Project webpage: https://glab-caltech.github.io/kyvo/
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or ECoRAG framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.
Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing large language models (LLMs) with relevant and up-to-date information. However, the retrieved sources can often contain conflicting information and it remains unclear how models should address such discrepancies. In this work, we first propose a novel taxonomy of knowledge conflict types in RAG, along with the desired model behavior for each type. We then introduce CONFLICTS, a high-quality benchmark with expert annotations of conflict types in a realistic RAG setting. CONFLICTS is the first benchmark that enables tracking progress on how models address a wide range of knowledge conflicts. We conduct extensive experiments on this benchmark, showing that LLMs often struggle to appropriately resolve conflicts between sources. While prompting LLMs to explicitly reason about the potential conflict in the retrieved documents significantly improves the quality and appropriateness of their responses, substantial room for improvement in future research remains.
The rapid advancement of image generation technologies intensifies the demand for interpretable and robust detection methods. Although existing approaches often attain high accuracy, they typically operate as black boxes without providing human-understandable justifications. Multi-modal Large Language Models (MLLMs), while not originally intended for forgery detection, exhibit strong analytical and reasoning capabilities. When properly fine-tuned, they can effectively identify AI-generated images and offer meaningful explanations. However, existing MLLMs still struggle with hallucination and often fail to align their visual interpretations with actual image content and human reasoning. To bridge this gap, we construct a dataset of AI-generated images annotated with bounding boxes and descriptive captions that highlight synthesis artifacts, establishing a foundation for human-aligned visual-textual grounded reasoning. We then finetune MLLMs through a multi-stage optimization strategy that progressively balances the objectives of accurate detection, visual localization, and coherent textual explanation. The resulting model achieves superior performance in both detecting AI-generated images and localizing visual flaws, significantly outperforming baseline methods.
The current paradigm of test-time scaling relies on generating long reasoning traces ("thinking" more) before producing a response. In agent problems that require interaction, this can be done by generating thinking traces before acting in the world. However, this process does not allow agents to acquire new information from the environment or adapt their behavior over time. In this work, we propose to scale test-time interaction, an untapped dimension of test-time scaling that increases the agent's interaction horizon to enable running rich behaviors such as exploration, backtracking, and dynamic re-planning within a single rollout. To demonstrate the promise of this scaling dimension, we study the domain of web agents. We first show that even prompting-based interaction scaling without any training can improve task success on web benchmarks non-trivially. Building on this, we introduce TTI (Test-Time Interaction), a curriculum-based online reinforcement learning (RL) approach that trains agents by adaptively adjusting their rollout lengths. Using a Gemma 3 12B model, TTI produces state-of-the-art open-source, open-data web agents on WebVoyager and WebArena benchmarks. We further show that TTI enables agents to balance exploration and exploitation adaptively. Our results establish interaction scaling as a powerful, complementary axis to scaling per-step compute, offering new avenues for training adaptive agents.
Large language models (LLMs) use data to learn about the world in order to produce meaningful correlations and predictions. As such, the nature, scale, quality, and diversity of the datasets used to train these models, or to support their work at inference time, have a direct impact on their quality. The rapid development and adoption of LLMs of varying quality has brought into focus the scarcity of publicly available, high-quality training data and revealed an urgent need to ground the stewardship of these datasets in sustainable practices with clear provenance chains. To that end, this technical report introduces Institutional Books 1.0, a large collection of public domain books originally digitized through Harvard Library's participation in the Google Books project, beginning in 2006. Working with Harvard Library, we extracted, analyzed, and processed these volumes into an extensively-documented dataset of historic texts. This analysis covers the entirety of Harvard Library's collection scanned as part of that project, originally spanning 1,075,899 volumes written in over 250 different languages for a total of approximately 250 billion tokens. As part of this initial release, the OCR-extracted text (original and post-processed) as well as the metadata (bibliographic, source, and generated) of the 983,004 volumes, or 242B tokens, identified as being in the public domain have been made available. This report describes this project's goals and methods as well as the results of the analyses we performed, all in service of making this historical collection more accessible and easier for humans and machines alike to filter, read and use.
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.
Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ homogeneous MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a heterogeneous Mixture-of-Adapters (MoA) approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: (i) Soft MoA achieves fine-grained integration by performing a weighted fusion of all expert outputs; (ii) Sparse MoA activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.
Recent advances in large language models (LLMs) hold great promise for financial applications but introduce critical accuracy and compliance challenges in Digital Regulatory Reporting (DRR). To address these issues, we propose RKEFino1, a regulation knowledge-enhanced financial reasoning model built upon Fino1, fine-tuned with domain knowledge from XBRL, CDM, and MOF. We formulate two QA tasks-knowledge-based and mathematical reasoning-and introduce a novel Numerical NER task covering financial entities in both sentences and tables. Experimental results demonstrate the effectiveness and generalization capacity of RKEFino1 in compliance-critical financial tasks. We have released our model on Hugging Face.
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
Recent advances in large language models show strong promise for formal reasoning. However, most LLM-based theorem provers have long been constrained by the need for expert-written formal statements as inputs, limiting their applicability to real-world problems expressed in natural language. We tackle this gap with Mathesis, the first end-to-end theorem proving pipeline processing informal problem statements. It contributes Mathesis-Autoformalizer, the first autoformalizer using reinforcement learning to enhance the formalization ability of natural language problems, aided by our novel LeanScorer framework for nuanced formalization quality assessment. It also proposes a Mathesis-Prover, which generates formal proofs from the formalized statements. To evaluate the real-world applicability of end-to-end formal theorem proving, we introduce Gaokao-Formal, a benchmark of 488 complex problems from China's national college entrance exam. Our approach is carefully designed, with a thorough study of each component. Experiments demonstrate Mathesis's effectiveness, with the autoformalizer outperforming the best baseline by 22% in pass-rate on Gaokao-Formal. The full system surpasses other model combinations, achieving 64% accuracy on MiniF2F with pass@32 and a state-of-the-art 18% on Gaokao-Formal.
Review-based Product Question Answering (PQA) allows e-commerce platforms to automatically address customer queries by leveraging insights from user reviews. However, existing PQA systems generate answers with only a single perspective, failing to capture the diversity of customer opinions. In this paper we introduce a novel task Quantitative Query-Focused Summarization (QQSUM), which aims to summarize diverse customer opinions into representative Key Points (KPs) and quantify their prevalence to effectively answer user queries. While Retrieval-Augmented Generation (RAG) shows promise for PQA, its generated answers still fall short of capturing the full diversity of viewpoints. To tackle this challenge, our model QQSUM-RAG, which extends RAG, employs few-shot learning to jointly train a KP-oriented retriever and a KP summary generator, enabling KP-based summaries that capture diverse and representative opinions. Experimental results demonstrate that QQSUM-RAG achieves superior performance compared to state-of-the-art RAG baselines in both textual quality and quantification accuracy of opinions. Our source code is available at: https://github.com/antangrocket1312/QQSUMM