Daily curated AI research papers with translations
The optimization of large language models (LLMs) remains a critical challenge, particularly as model scaling exacerbates sensitivity to algorithmic imprecision and training instability. Recent advances in optimizers have improved convergence efficiency through momentum orthogonalization, but suffer from two key robustness limitations: dimensional fragility in orthogonalization precision and vulnerability to outlier-induced noise. To address these robustness challenges, we introduce ROOT, a Robust Orthogonalized Optimizer that enhances training stability through dual robustness mechanisms. First, we develop a dimension-robust orthogonalization scheme using adaptive Newton iterations with fine-grained coefficients tailored to specific matrix sizes, ensuring consistent precision across diverse architectural configurations. Second, we introduce an optimization-robust framework via proximal optimization that suppresses outlier noise while preserving meaningful gradient directions. Extensive experiments demonstrate that ROOT achieves significantly improved robustness, with faster convergence and superior final performance compared to both Muon and Adam-based optimizers, particularly in noisy and non-convex scenarios. Our work establishes a new paradigm for developing robust and precise optimizers capable of handling the complexities of modern large-scale model training. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/ROOT.
Recent advances in LLM-guided evolutionary computation, particularly AlphaEvolve (Novikov et al., 2025; Georgiev et al., 2025), have demonstrated remarkable success in discovering novel mathematical constructions and solving challenging optimization problems. However, the high-level descriptions in published work leave many implementation details unspecified, hindering reproducibility and further research. In this report we present GigaEvo, an extensible open-source framework that enables researchers to study and experiment with hybrid LLM-evolution approaches inspired by AlphaEvolve. Our system provides modular implementations of key components: MAP-Elites quality-diversity algorithms, asynchronous DAG-based evaluation pipelines, LLM-driven mutation operators with insight generation and bidirectional lineage tracking, and flexible multi-island evolutionary strategies. In order to assess reproducibility and validate our implementation we evaluate GigaEvo on challenging problems from the AlphaEvolve paper: Heilbronn triangle placement, circle packing in squares, and high-dimensional kissing numbers. The framework emphasizes modularity, concurrency, and ease of experimentation, enabling rapid prototyping through declarative configuration. We provide detailed descriptions of system architecture, implementation decisions, and experimental methodology to support further research in LLM driven evolutionary methods. The GigaEvo framework and all experimental code are available at https://github.com/AIRI-Institute/gigaevo-core.
Medical image segmentation is fundamental for biomedical discovery. Existing methods lack generalizability and demand extensive, time-consuming manual annotation for new clinical application. Here, we propose MedSAM-3, a text promptable medical segmentation model for medical image and video segmentation. By fine-tuning the Segment Anything Model (SAM) 3 architecture on medical images paired with semantic conceptual labels, our MedSAM-3 enables medical Promptable Concept Segmentation (PCS), allowing precise targeting of anatomical structures via open-vocabulary text descriptions rather than solely geometric prompts. We further introduce the MedSAM-3 Agent, a framework that integrates Multimodal Large Language Models (MLLMs) to perform complex reasoning and iterative refinement in an agent-in-the-loop workflow. Comprehensive experiments across diverse medical imaging modalities, including X-ray, MRI, Ultrasound, CT, and video, demonstrate that our approach significantly outperforms existing specialist and foundation models. We will release our code and model at https://github.com/Joey-S-Liu/MedSAM3.
Vision-language agents have achieved remarkable progress in a variety of multimodal reasoning tasks; however, their learning remains constrained by the limitations of human-annotated supervision. Recent self-rewarding approaches attempt to overcome this constraint by allowing models to act as their own critics or reward providers. Yet, purely text-based self-evaluation struggles to verify complex visual reasoning steps and often suffers from evaluation hallucinations. To address these challenges, inspired by recent advances in tool-integrated reasoning, we propose Agent0-VL, a self-evolving vision-language agent that achieves continual improvement with tool-integrated reasoning. Agent0-VL incorporates tool usage not only into reasoning but also into self-evaluation and self-repair, enabling the model to introspect, verify, and refine its reasoning through evidence-grounded analysis. It unifies two synergistic roles within a single LVLM: a Solver that performs multi-turn tool-integrated reasoning, and a Verifier that generates structured feedback and fine-grained self-rewards through tool-grounded critique. These roles interact through a Self-Evolving Reasoning Cycle, where tool-based verification and reinforcement learning jointly align the reasoning and evaluation distributions for stable self-improvement. Through this zero-external-reward evolution, Agent0-VL aligns its reasoning and verification behaviors without any human annotation or external reward models, achieving continual self-improvement. Experiments on geometric problem solving and visual scientific analysis show that Agent0-VL achieves an 12.5% improvement over the base model. Our code is available at https://github.com/aiming-lab/Agent0/Agent0-VL{this https URL}.
Preserving first-frame identity while ensuring precise motion control is a fundamental challenge in human image animation. The Image-to-Motion Binding process of the dominant Reference-to-Video (R2V) paradigm overlooks critical spatio-temporal misalignments common in real-world applications, leading to failures such as identity drift and visual artifacts. We introduce SteadyDancer, an Image-to-Video (I2V) paradigm-based framework that achieves harmonized and coherent animation and is the first to ensure first-frame preservation robustly. Firstly, we propose a Condition-Reconciliation Mechanism to harmonize the two conflicting conditions, enabling precise control without sacrificing fidelity. Secondly, we design Synergistic Pose Modulation Modules to generate an adaptive and coherent pose representation that is highly compatible with the reference image. Finally, we employ a Staged Decoupled-Objective Training Pipeline that hierarchically optimizes the model for motion fidelity, visual quality, and temporal coherence. Experiments demonstrate that SteadyDancer achieves state-of-the-art performance in both appearance fidelity and motion control, while requiring significantly fewer training resources than comparable methods.
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
Pre-trained video models learn powerful priors for generating high-quality, temporally coherent content. While these models excel at temporal coherence, their dynamics are often constrained by the continuous nature of their training data. We hypothesize that by injecting the rich and unconstrained content diversity from image data into this coherent temporal framework, we can generate image sets that feature both natural transitions and a far more expansive dynamic range. To this end, we introduce iMontage, a unified framework designed to repurpose a powerful video model into an all-in-one image generator. The framework consumes and produces variable-length image sets, unifying a wide array of image generation and editing tasks. To achieve this, we propose an elegant and minimally invasive adaptation strategy, complemented by a tailored data curation process and training paradigm. This approach allows the model to acquire broad image manipulation capabilities without corrupting its invaluable original motion priors. iMontage excels across several mainstream many-in-many-out tasks, not only maintaining strong cross-image contextual consistency but also generating scenes with extraordinary dynamics that surpass conventional scopes. Find our homepage at: https://kr1sjfu.github.io/iMontage-web/.
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
The quadratic complexity of full attention limits efficient long-context processing in large language models (LLMs). Sparse attention mitigates this cost by restricting each query to attend to a subset of previous tokens; however, training-free approaches often lead to severe performance degradation. Native sparse-attention methods (e.g., NSA, MoBA) alleviate this issue, yet exhibit a critical paradox: they produce lower attention sparsity than full-attention models, despite aiming to approximate full attention, which may constrain their effectiveness. We attribute this paradox to gradient update deficiency: low-ranked key-value pairs excluded during sparse training receive neither forward contribution nor backward gradients, and thus never learn proper suppression. To overcome this limitation, we propose SSA (Sparse Sparse Attention), a unified training framework that considers both sparse and full attention and enforces bidirectional alignment at every layer. This design preserves gradient flow to all tokens while explicitly encouraging sparse-attention outputs to align with their full-attention counterparts, thereby promoting stronger sparsity. As a result, SSA achieves state-of-the-art performance under both sparse and full attention inference across multiple commonsense benchmarks. Furthermore, SSA enables models to adapt smoothly to varying sparsity budgets; performance improves consistently as more tokens are allowed to attend, supporting flexible compute-performance trade-offs at inference time. Finally, we show that native sparse-attention training surprisingly improves long-context extrapolation by mitigating the over-allocation of attention values in sink areas, with SSA demonstrating the strongest extrapolation capability.
This paper presents HunyuanOCR, a commercial-grade, open-source, and lightweight (1B parameters) Vision-Language Model (VLM) dedicated to OCR tasks. The architecture comprises a Native Vision Transformer (ViT) and a lightweight LLM connected via an MLP adapter. HunyuanOCR demonstrates superior performance, outperforming commercial APIs, traditional pipelines, and larger models (e.g., Qwen3-VL-4B). Specifically, it surpasses current public solutions in perception tasks (Text Spotting, Parsing) and excels in semantic tasks (IE, Text Image Translation), securing first place in the ICDAR 2025 DIMT Challenge (Small Model Track). Furthermore, it achieves state-of-the-art (SOTA) results on OCRBench among VLMs with fewer than 3B parameters. HunyuanOCR achieves breakthroughs in three key aspects: 1) Unifying Versatility and Efficiency: We implement comprehensive support for core capabilities including spotting, parsing, IE, VQA, and translation within a lightweight framework. This addresses the limitations of narrow "OCR expert models" and inefficient "General VLMs". 2) Streamlined End-to-End Architecture: Adopting a pure end-to-end paradigm eliminates dependencies on pre-processing modules (e.g., layout analysis). This fundamentally resolves error propagation common in traditional pipelines and simplifies system deployment. 3) Data-Driven and RL Strategies: We confirm the critical role of high-quality data and, for the first time in the industry, demonstrate that Reinforcement Learning (RL) strategies yield significant performance gains in OCR tasks. HunyuanOCR is officially open-sourced on HuggingFace. We also provide a high-performance deployment solution based on vLLM, placing its production efficiency in the top tier. We hope this model will advance frontier research and provide a solid foundation for industrial applications.
Recent interactive video world model methods generate scene evolution conditioned on user instructions. Although they achieve impressive results, two key limitations remain. First, they fail to fully exploit the correspondence between instruction-driven scene motion and the underlying 3D geometry, which results in structural instability under viewpoint changes. Second, they easily forget historical information during multi-step interaction, resulting in error accumulation and progressive drift in scene semantics and structure. To address these issues, we propose MagicWorld, an interactive video world model that integrates 3D geometric priors and historical retrieval. MagicWorld starts from a single scene image, employs user actions to drive dynamic scene evolution, and autoregressively synthesizes continuous scenes. We introduce the Action-Guided 3D Geometry Module (AG3D), which constructs a point cloud from the first frame of each interaction and the corresponding action, providing explicit geometric constraints for viewpoint transitions and thereby improving structural consistency. We further propose History Cache Retrieval (HCR) mechanism, which retrieves relevant historical frames during generation and injects them as conditioning signals, helping the model utilize past scene information and mitigate error accumulation. Experimental results demonstrate that MagicWorld achieves notable improvements in scene stability and continuity across interaction iterations.
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
Despite advances, video diffusion transformers still struggle to generalize beyond their training length, a challenge we term video length extrapolation. We identify two failure modes: model-specific periodic content repetition and a universal quality degradation. Prior works attempt to solve repetition via positional encodings, overlooking quality degradation and achieving only limited extrapolation. In this paper, we revisit this challenge from a more fundamental view: attention maps, which directly govern how context influences outputs. We identify that both failure modes arise from a unified cause: attention dispersion, where tokens beyond the training window dilute learned attention patterns. This leads to quality degradation and repetition emerges as a special case when this dispersion becomes structured into periodic attention patterns, induced by harmonic properties of positional encodings. Building on this insight, we propose UltraViCo, a training-free, plug-and-play method that suppresses attention for tokens beyond the training window via a constant decay factor. By jointly addressing both failure modes, we outperform a broad set of baselines largely across models and extrapolation ratios, pushing the extrapolation limit from 2x to 4x. Remarkably, it improves Dynamic Degree and Imaging Quality by 233% and 40.5% over the previous best method at 4x extrapolation. Furthermore, our method generalizes seamlessly to downstream tasks such as controllable video synthesis and editing.
Generative models have excelled in RGB synthesis, but real-world applications require RGBA manipulation. This has led to a fragmented landscape: specialized, single-task models handle alpha but lack versatility, while unified multi-task frameworks are confined to the RGB domain. To bridge this critical gap, we propose OmniAlpha, the first unified, multi-task generative framework for sequence-to-sequence RGBA image generation and editing. Its architecture features MSRoPE-BiL, a novel RoPE method with a bi-directionally extendable layer axis for its Diffusion Transformer (DiT) backbone, enabling the concurrent processing of multiple input and target RGBA layers. To power this framework, we introduce AlphaLayers, a new dataset of 1,000 high-quality, multi-layer triplets, built via a novel automated synthesis and filter pipeline. Jointly training OmniAlpha on this dataset across a comprehensive suite of 21 diverse tasks, extensive experiments demonstrate that our unified approach consistently outperforms strong, specialized baselines. Most notably, OmniAlpha achieves a dramatic 84.8% relative reduction in SAD for mask-free matting on AIM-500 and wins over 90% of human preferences in layer-conditioned completion. Our work proves that a unified, multi-task model can learn a superior shared representation for RGBA, paving the way for more powerful, layer-aware generative systems.
We present ReDirector, a novel camera-controlled video retake generation method for dynamically captured variable-length videos. In particular, we rectify a common misuse of RoPE in previous works by aligning the spatiotemporal positions of the input video and the target retake. Moreover, we introduce Rotary Camera Encoding (RoCE), a camera-conditioned RoPE phase shift that captures and integrates multi-view relationships within and across the input and target videos. By integrating camera conditions into RoPE, our method generalizes to out-of-distribution camera trajectories and video lengths, yielding improved dynamic object localization and static background preservation. Extensive experiments further demonstrate significant improvements in camera controllability, geometric consistency, and video quality across various trajectories and lengths.
While recent vision-language models (VLMs) demonstrate strong image understanding, their ability to "think with images", i.e., to reason through multi-step visual interactions, remains limited. We introduce VISTA-Gym, a scalable training environment for incentivizing tool-integrated visual reasoning capabilities in VLMs. VISTA-Gym unifies diverse real-world multimodal reasoning tasks (7 tasks from 13 datasets in total) with a standardized interface for visual tools (e.g., grounding, parsing), executable interaction loops, verifiable feedback signals, and efficient trajectory logging, enabling visual agentic reinforcement learning at scale. While recent VLMs exhibit strong text-only reasoning, both proprietary and open-source models still struggle with tool selection, invocation, and coordination. With VISTA-Gym, we train VISTA-R1 to interleave tool-use with agentic reasoning via multi-turn trajectory sampling and end-to-end reinforcement learning. Extensive experiments across 11 public reasoning-intensive VQA benchmarks show that VISTA-R1-8B outperforms state-of-the-art baselines with similar sizes by 9.51%-18.72%, demonstrating VISTA-Gym as an effective training ground to unlock the tool-integrated reasoning capabilities for VLMs.
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our dataset and code will be released at https://github.com/LongHZ140516/MajutsuCity.
Large language models (LLMs) solve complex problems yet fail on simpler variants, suggesting they achieve correct outputs through mechanisms fundamentally different from human reasoning. To understand this gap, we synthesize cognitive science research into a taxonomy of 28 cognitive elements spanning reasoning invariants, meta-cognitive controls, representations for organizing reasoning & knowledge, and transformation operations. We introduce a fine-grained evaluation framework and conduct the first large-scale empirical analysis of 192K traces from 18 models across text, vision, and audio, complemented by 54 human think-aloud traces, which we make publicly available. We find that models under-utilize cognitive elements correlated with success, narrowing to rigid sequential processing on ill-structured problems where diverse representations and meta-cognitive monitoring are critical. Human traces show more abstraction and conceptual processing, while models default to surface-level enumeration. Meta-analysis of 1.6K LLM reasoning papers reveals the research community concentrates on easily quantifiable elements (sequential organization: 55%, decomposition: 60%) but neglecting meta-cognitive controls (self-awareness: 16%) that correlate with success. Models possess behavioral repertoires associated with success but fail to deploy them spontaneously. Leveraging these patterns, we develop test-time reasoning guidance that automatically scaffold successful structures, improving performance by up to 66.7% on complex problems. By establishing a shared vocabulary between cognitive science and LLM research, our framework enables systematic diagnosis of reasoning failures and principled development of models that reason through robust cognitive mechanisms rather than spurious shortcuts, while providing tools to test theories of human cognition at scale.
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code will be released soon.
Progress in computer use agents (CUAs) has been constrained by the absence of large and high-quality datasets that capture how humans interact with a computer. While LLMs have thrived on abundant textual data, no comparable corpus exists for CUA trajectories. To address these gaps, we introduce FaraGen, a novel synthetic data generation system for multi-step web tasks. FaraGen can propose diverse tasks from frequently used websites, generate multiple solution attempts, and filter successful trajectories using multiple verifiers. It achieves high throughput, yield, and diversity for multi-step web tasks, producing verified trajectories at approximately $1 each. We use this data to train Fara-7B, a native CUA model that perceives the computer using only screenshots, executes actions via predicted coordinates, and is small enough to run on-device. We find that Fara-7B outperforms other CUA models of comparable size on benchmarks like WebVoyager, Online-Mind2Web, and WebTailBench -- our novel benchmark that better captures under-represented web tasks in pre-existing benchmarks. Furthermore, Fara-7B is competitive with much larger frontier models, illustrating key benefits of scalable data generation systems in advancing small efficient agentic models. We are making Fara-7B open-weight on Microsoft Foundry and HuggingFace, and we are releasing WebTailBench.
This paper studies Visual Question-Visual Answering (VQ-VA): generating an image, rather than text, in response to a visual question -- an ability that has recently emerged in proprietary systems such as NanoBanana and GPT-Image. To also bring this capability to open-source models, we introduce VQ-VA World, a data-centric framework built around an agentic pipeline for large-scale, targeted data construction. Leveraging web-scale deployment, this pipeline crawls a massive amount of ~1.8M high-quality, interleaved image-text samples for model training. For evaluation, we further release IntelligentBench, a human-curated benchmark that systematically assesses VQ-VA along the aspects of world knowledge, design knowledge, and reasoning. Training with VQ-VA World data yields strong empirical gains: it helps LightFusion attain 53.06 on IntelligentBench, substantially surpassing the best prior open-source baselines (i.e., 7.78 from vanilla LightFusion; 1.94 from UniWorld-V1), and significantly narrowing the gap toward leading proprietary systems (e.g., 81.67 from NanoBanana; 82.64 from GPT-Image). By releasing the full suite of model weights, datasets, and pipelines, we hope to stimulate future research on VQ-VA.
Task scheduling is critical for embodied AI, enabling agents to follow natural language instructions and execute actions efficiently in 3D physical worlds. However, existing datasets often simplify task planning by ignoring operations research (OR) knowledge and 3D spatial grounding. In this work, we propose Operations Research knowledge-based 3D Grounded Task Scheduling (ORS3D), a new task that requires the synergy of language understanding, 3D grounding, and efficiency optimization. Unlike prior settings, ORS3D demands that agents minimize total completion time by leveraging parallelizable subtasks, e.g., cleaning the sink while the microwave operates. To facilitate research on ORS3D, we construct ORS3D-60K, a large-scale dataset comprising 60K composite tasks across 4K real-world scenes. Furthermore, we propose GRANT, an embodied multi-modal large language model equipped with a simple yet effective scheduling token mechanism to generate efficient task schedules and grounded actions. Extensive experiments on ORS3D-60K validate the effectiveness of GRANT across language understanding, 3D grounding, and scheduling efficiency. The code is available at https://github.com/H-EmbodVis/GRANT
Realistic 3D city generation is fundamental to a wide range of applications, including virtual reality and digital twins. However, most existing methods rely on training a single diffusion model, which limits their ability to generate personalized and boundless city-scale scenes. In this paper, we present Yo'City, a novel agentic framework that enables user-customized and infinitely expandable 3D city generation by leveraging the reasoning and compositional capabilities of off-the-shelf large models. Specifically, Yo'City first conceptualize the city through a top-down planning strategy that defines a hierarchical "City-District-Grid" structure. The Global Planner determines the overall layout and potential functional districts, while the Local Designer further refines each district with detailed grid-level descriptions. Subsequently, the grid-level 3D generation is achieved through a "produce-refine-evaluate" isometric image synthesis loop, followed by image-to-3D generation. To simulate continuous city evolution, Yo'City further introduces a user-interactive, relationship-guided expansion mechanism, which performs scene graph-based distance- and semantics-aware layout optimization, ensuring spatially coherent city growth. To comprehensively evaluate our method, we construct a diverse benchmark dataset and design six multi-dimensional metrics that assess generation quality from the perspectives of semantics, geometry, texture, and layout. Extensive experiments demonstrate that Yo'City consistently outperforms existing state-of-the-art methods across all evaluation aspects.
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but still suffers from long contexts and disjoint retrieval-generation optimization. In this work, we propose CLaRa (Continuous Latent Reasoning), a unified framework that performs embedding-based compression and joint optimization in a shared continuous space. To obtain semantically rich and retrievable compressed vectors, we introduce SCP, a key-preserving data synthesis framework using QA and paraphrase supervision. CLaRa then trains the reranker and generator end-to-end via a single language modeling loss, with gradients flowing through both modules using a differentiable top-k estimator. Theoretically, this unified optimization aligns retrieval relevance with answer quality. Experiments across multiple QA benchmarks show that CLaRa achieves state-of-the-art compression and reranking performance, often surpassing text-based fine-tuned baselines.
While recent video generation models have achieved significant visual fidelity, they often suffer from the lack of explicit physical controllability and plausibility. To address this, some recent studies attempted to guide the video generation with physics-based rendering. However, these methods face inherent challenges in accurately modeling complex physical properties and effectively control ling the resulting physical behavior over extended temporal sequences. In this work, we introduce PhysChoreo, a novel framework that can generate videos with diverse controllability and physical realism from a single image. Our method consists of two stages: first, it estimates the static initial physical properties of all objects in the image through part-aware physical property reconstruction. Then, through temporally instructed and physically editable simulation, it synthesizes high-quality videos with rich dynamic behaviors and physical realism. Experimental results show that PhysChoreo can generate videos with rich behaviors and physical realism, outperforming state-of-the-art methods on multiple evaluation metrics.
Diffusion-based editing enables realistic modification of local image regions, making AI-generated content harder to detect. Existing AIGC detection benchmarks focus on classifying entire images, overlooking the localization of diffusion-based edits. We introduce DiffSeg30k, a publicly available dataset of 30k diffusion-edited images with pixel-level annotations, designed to support fine-grained detection. DiffSeg30k features: 1) In-the-wild images--we collect images or image prompts from COCO to reflect real-world content diversity; 2) Diverse diffusion models--local edits using eight SOTA diffusion models; 3) Multi-turn editing--each image undergoes up to three sequential edits to mimic real-world sequential editing; and 4) Realistic editing scenarios--a vision-language model (VLM)-based pipeline automatically identifies meaningful regions and generates context-aware prompts covering additions, removals, and attribute changes. DiffSeg30k shifts AIGC detection from binary classification to semantic segmentation, enabling simultaneous localization of edits and identification of the editing models. We benchmark three baseline segmentation approaches, revealing significant challenges in semantic segmentation tasks, particularly concerning robustness to image distortions. Experiments also reveal that segmentation models, despite being trained for pixel-level localization, emerge as highly reliable whole-image classifiers of diffusion edits, outperforming established forgery classifiers while showing great potential in cross-generator generalization. We believe DiffSeg30k will advance research in fine-grained localization of AI-generated content by demonstrating the promise and limitations of segmentation-based methods. DiffSeg30k is released at: https://huggingface.co/datasets/Chaos2629/Diffseg30k
Recent advancements in multimodal large language models (MLLMs) and video agent systems have significantly improved general video understanding. However, when applied to scientific video understanding and educating, a domain that demands external professional knowledge integration and rigorous step-wise reasoning, existing approaches often struggle. To bridge this gap, we propose SciEducator, the first iterative self-evolving multi-agent system for scientific video comprehension and education. Rooted in the classical Deming Cycle from management science, our design reformulates its Plan-Do-Study-Act philosophy into a self-evolving reasoning and feedback mechanism, which facilitates the interpretation of intricate scientific activities in videos. Moreover, SciEducator can produce multimodal educational content tailored to specific scientific processes, including textual instructions, visual guides, audio narrations, and interactive references. To support evaluation, we construct SciVBench, a benchmark consisting of 500 expert-verified and literature-grounded science QA pairs across five categories, covering physical, chemical, and everyday phenomena. Extensive experiments demonstrate that SciEducator substantially outperforms leading closed-source MLLMs (e.g., Gemini, GPT-4o) and state-of-the-art video agents on the benchmark, establishing a new paradigm for the community.
While recent text-to-video (T2V) diffusion models have achieved impressive quality and prompt alignment, they often produce low-diversity outputs when sampling multiple videos from a single text prompt. We tackle this challenge by formulating it as a set-level policy optimization problem, with the goal of training a policy that can cover the diverse range of plausible outcomes for a given prompt. To address this, we introduce DPP-GRPO, a novel framework for diverse video generation that combines Determinantal Point Processes (DPPs) and Group Relative Policy Optimization (GRPO) theories to enforce explicit reward on diverse generations. Our objective turns diversity into an explicit signal by imposing diminishing returns on redundant samples (via DPP) while supplies groupwise feedback over candidate sets (via GRPO). Our framework is plug-and-play and model-agnostic, and encourages diverse generations across visual appearance, camera motions, and scene structure without sacrificing prompt fidelity or perceptual quality. We implement our method on WAN and CogVideoX, and show that our method consistently improves video diversity on state-of-the-art benchmarks such as VBench, VideoScore, and human preference studies. Moreover, we release our code and a new benchmark dataset of 30,000 diverse prompts to support future research.
Generative models for structure-based drug design are often limited to a specific modality, restricting their broader applicability. To address this challenge, we introduce FuncBind, a framework based on computer vision to generate target-conditioned, all-atom molecules across atomic systems. FuncBind uses neural fields to represent molecules as continuous atomic densities and employs score-based generative models with modern architectures adapted from the computer vision literature. This modality-agnostic representation allows a single unified model to be trained on diverse atomic systems, from small to large molecules, and handle variable atom/residue counts, including non-canonical amino acids. FuncBind achieves competitive in silico performance in generating small molecules, macrocyclic peptides, and antibody complementarity-determining region loops, conditioned on target structures. FuncBind also generated in vitro novel antibody binders via de novo redesign of the complementarity-determining region H3 loop of two chosen co-crystal structures. As a final contribution, we introduce a new dataset and benchmark for structure-conditioned macrocyclic peptide generation. The code is available at https://github.com/prescient-design/funcbind.
Large Language Models (LLMs) demonstrate partial forecasting competence across social, political, and economic events. Yet, their predictive ability varies sharply with domain structure and prompt framing. We investigate how forecasting performance varies with different model families on real-world questions about events that happened beyond the model cutoff date. We analyze how context, question type, and external knowledge affect accuracy and calibration, and how adding factual news context modifies belief formation and failure modes. Our results show that forecasting ability is highly variable as it depends on what, and how, we ask.
What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.
Obtaining the precise 3D motion of a table tennis ball from standard monocular videos is a challenging problem, as existing methods trained on synthetic data struggle to generalize to the noisy, imperfect ball and table detections of the real world. This is primarily due to the inherent lack of 3D ground truth trajectories and spin annotations for real-world video. To overcome this, we propose a novel two-stage pipeline that divides the problem into a front-end perception task and a back-end 2D-to-3D uplifting task. This separation allows us to train the front-end components with abundant 2D supervision from our newly created TTHQ dataset, while the back-end uplifting network is trained exclusively on physically-correct synthetic data. We specifically re-engineer the uplifting model to be robust to common real-world artifacts, such as missing detections and varying frame rates. By integrating a ball detector and a table keypoint detector, our approach transforms a proof-of-concept uplifting method into a practical, robust, and high-performing end-to-end application for 3D table tennis trajectory and spin analysis.