ChatPaper.aiChatPaper

TAID: 言語モデルにおける効率的な知識転送のための時間的適応補間蒸留

TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models

January 28, 2025
著者: Makoto Shing, Kou Misaki, Han Bao, Sho Yokoi, Takuya Akiba
cs.AI

要旨

因果言語モデルは驚異的な能力を示していますが、そのサイズはリソースに制約のある環境での展開において重要な課題を提起しています。大規模な教師モデルから知識を小さな生徒モデルに転送するための広く使用されているテクニックである知識蒸留は、モデルの圧縮のための有望なアプローチを示しています。残る重要な問題は、教師モデルと生徒モデルの間の主な違いにあります。具体的には、大きな容量のギャップ、モードの平均化、モードの崩壊があり、これらは蒸留中に障壁となります。これらの問題に対処するために、私たちは一連の実験を行い、TAIDの優れた性能を示しています。
English
Causal language models have demonstrated remarkable capabilities, but their size poses significant challenges for deployment in resource-constrained environments. Knowledge distillation, a widely-used technique for transferring knowledge from a large teacher model to a small student model, presents a promising approach for model compression. A significant remaining issue lies in the major differences between teacher and student models, namely the substantial capacity gap, mode averaging, and mode collapse, which pose barriers during distillation. To address these issues, we introduce Temporally Adaptive Interpolated Distillation (TAID), a novel knowledge distillation approach that dynamically interpolates student and teacher distributions through an adaptive intermediate distribution, gradually shifting from the student's initial distribution towards the teacher's distribution. We provide a theoretical analysis demonstrating TAID's ability to prevent mode collapse and empirically show its effectiveness in addressing the capacity gap while balancing mode averaging and mode collapse. Our comprehensive experiments demonstrate TAID's superior performance across various model sizes and architectures in both instruction tuning and pre-training scenarios. Furthermore, we showcase TAID's practical impact by developing two state-of-the-art compact foundation models: TAID-LLM-1.5B for language tasks and TAID-VLM-2B for vision-language tasks. These results demonstrate TAID's effectiveness in creating high-performing and efficient models, advancing the development of more accessible AI technologies.

Summary

AI-Generated Summary

PDF65January 30, 2025