글로벌 PIQA: 100개 이상 언어와 문화에 걸친 물리적 상식 추론 능력 평가
Global PIQA: Evaluating Physical Commonsense Reasoning Across 100+ Languages and Cultures
October 28, 2025
저자: Tyler A. Chang, Catherine Arnett, Abdelrahman Eldesokey, Abdelrahman Sadallah, Abeer Kashar, Abolade Daud, Abosede Grace Olanihun, Adamu Labaran Mohammed, Adeyemi Praise, Adhikarinayum Meerajita Sharma, Aditi Gupta, Afitab Iyigun, Afonso Simplício, Ahmed Essouaied, Aicha Chorana, Akhil Eppa, Akintunde Oladipo, Akshay Ramesh, Aleksei Dorkin, Alfred Malengo Kondoro, Alham Fikri Aji, Ali Eren Çetintaş, Allan Hanbury, Alou Dembele, Alp Niksarli, Álvaro Arroyo, Amin Bajand, Amol Khanna, Ana Chkhaidze, Ana Condez, Andiswa Mkhonto, Andrew Hoblitzell, Andrew Tran, Angelos Poulis, Anirban Majumder, Anna Vacalopoulou, Annette Kuuipolani Kanahele Wong, Annika Simonsen, Anton Kovalev, Ashvanth. S, Ayodeji Joseph Lana, Barkin Kinay, Bashar Alhafni, Benedict Cibalinda Busole, Bernard Ghanem, Bharti Nathani, Biljana Stojanovska Đurić, Bola Agbonile, Bragi Bergsson, Bruce Torres Fischer, Burak Tutar, Burcu Alakuş Çınar, Cade J. Kanoniakapueo Kane, Can Udomcharoenchaikit, Catherine Arnett, Chadi Helwe, Chaithra Reddy Nerella, Chen Cecilia Liu, Chiamaka Glory Nwokolo, Cristina España-Bonet, Cynthia Amol, DaeYeop Lee, Dana Arad, Daniil Dzenhaliou, Daria Pugacheva, Dasol Choi, Daud Abolade, David Liu, David Semedo, Deborah Popoola, Deividas Mataciunas, Delphine Nyaboke, Dhyuthy Krishna Kumar, Diogo Glória-Silva, Diogo Tavares, Divyanshu Goyal, DongGeon Lee, Ebele Nwamaka Anajemba, Egonu Ngozi Grace, Elena Mickel, Elena Tutubalina, Elias Herranen, Emile Anand, Emmanuel Habumuremyi, Emuobonuvie Maria Ajiboye, Eryawan Presma Yulianrifat, Esther Adenuga, Ewa Rudnicka, Faith Olabisi Itiola, Faran Taimoor Butt, Fathima Thekkekara, Fatima Haouari, Filbert Aurelian Tjiaranata, Firas Laakom, Francesca Grasso, Francesco Orabona, Francesco Periti, Gbenga Kayode Solomon, Gia Nghia Ngo, Gloria Udhehdhe-oze, Gonçalo Martins, Gopi Naga Sai Ram Challagolla, Guijin Son, Gulnaz Abdykadyrova, Hafsteinn Einarsson, Hai Hu, Hamidreza Saffari, Hamza Zaidi, Haopeng Zhang, Harethah Abu Shairah, Harry Vuong, Hele-Andra Kuulmets, Houda Bouamor, Hwanjo Yu, Iben Nyholm Debess, İbrahim Ethem Deveci, Ikhlasul Akmal Hanif, Ikhyun Cho, Inês Calvo, Inês Vieira, Isaac Manzi, Ismail Daud, Itay Itzhak, Iuliia, Alekseenko, Ivan Belashkin, Ivan Spada, Ivan Zhelyazkov, Jacob Brinton, Jafar Isbarov, Jaka Čibej, Jan Čuhel, Jan Kocoń, Jauza Akbar Krito, Jebish Purbey, Jennifer Mickel, Jennifer Za, Jenny Kunz, Jihae Jeong, Jimena Tena Dávalos, Jinu Lee, João Magalhães, John Yi, Jongin Kim, Joseph Chataignon, Joseph Marvin Imperial, Jubeerathan Thevakumar, Judith Land, Junchen Jiang, Jungwhan Kim, Kairit Sirts, Kamesh R, Kamesh V, Kanda Patrick Tshinu, Kätriin Kukk, Kaustubh Ponkshe, Kavsar Huseynova, Ke He, Kelly Buchanan, Kengatharaiyer Sarveswaran, Kerem Zaman, Khalil Mrini, Kian Kyars, Krister Kruusmaa, Kusum Chouhan, Lainitha Krishnakumar, Laura Castro Sánchez, Laura Porrino Moscoso, Leshem Choshen, Levent Sencan, Lilja Øvrelid, Lisa Alazraki, Lovina Ehimen-Ugbede, Luheerathan Thevakumar, Luxshan Thavarasa, Mahnoor Malik, Mamadou K. Keita, Mansi Jangid, Marco De Santis, Marcos García, Marek Suppa, Mariam D'Ciofalo, Marii Ojastu, Maryam Sikander, Mausami Narayan, Maximos Skandalis, Mehak Mehak, Mehmet İlteriş Bozkurt, Melaku Bayu Workie, Menan Velayuthan, Michael Leventhal, Michał Marcińczuk, Mirna Potočnjak, Mohammadamin Shafiei, Mridul Sharma, Mrityunjaya Indoria, Muhammad Ravi Shulthan Habibi, Murat Kolić, Nada Galant, Naphat Permpredanun, Narada Maugin, Nicholas Kluge Corrêa, Nikola Ljubešić, Nirmal Thomas, Nisansa de Silva, Nisheeth Joshi, Nitish Ponkshe, Nizar Habash, Nneoma C. Udeze, Noel Thomas, Noémi Ligeti-Nagy, Nouhoum Coulibaly, Nsengiyumva Faustin, Odunayo Kareemat Buliaminu, Odunayo Ogundepo, Oghojafor Godswill Fejiro, Ogundipe Blessing Funmilola, Okechukwu God'spraise, Olanrewaju Samuel, Olaoye Deborah Oluwaseun, Olasoji Akindejoye, Olga Popova, Olga Snissarenko, Onyinye Anulika Chiemezie, Orkun Kinay, Osman Tursun, Owoeye Tobiloba Moses, Oyelade Oluwafemi Joshua, Oyesanmi Fiyinfoluwa, Pablo Gamallo, Pablo Rodríguez Fernández, Palak Arora, Pedro Valente, Peter Rupnik, Philip Oghenesuowho Ekiugbo, Pramit Sahoo, Prokopis Prokopidis, Pua Niau-Puhipau, Quadri Yahya, Rachele Mignone, Raghav Singhal, Ram Mohan Rao Kadiyala, Raphael Merx, Rapheal Afolayan, Ratnavel Rajalakshmi, Rishav Ghosh, Romina Oji, Ron Kekeha Solis, Rui Guerra, Rushikesh Zawar, Sa'ad Nasir Bashir, Saeed Alzaabi, Sahil Sandeep, Sai Pavan Batchu, SaiSandeep Kantareddy, Salsabila Zahirah Pranida, Sam Buchanan, Samuel Rutunda, Sander Land, Sarah Sulollari, Sardar Ali, Saroj Sapkota, Saulius Tautvaisas, Sayambhu Sen, Sayantani Banerjee, Sebastien Diarra, SenthilNathan. M, Sewoong Lee, Shaan Shah, Shankar Venkitachalam, Sharifa Djurabaeva, Sharon Ibejih, Shivanya Shomir Dutta, Siddhant Gupta, Silvia Paniagua Suárez, Sina Ahmadi, Sivasuthan Sukumar, Siyuan Song, Snegha A., Sokratis Sofianopoulos, Sona Elza Simon, Sonja Benčina, Sophie Gvasalia, Sphurti Kirit More, Spyros Dragazis, Stephan P. Kaufhold, Suba. S, Sultan AlRashed, Surangika Ranathunga, Taiga Someya, Taja Kuzman Pungeršek, Tal Haklay, Tasi'u Jibril, Tatsuya Aoyama, Tea Abashidze, Terenz Jomar Dela Cruz, Terra Blevins, Themistoklis Nikas, Theresa Dora Idoko, Thu Mai Do, Tilek Chubakov, Tommaso Gargiani, Uma Rathore, Uni Johannesen, Uwuma Doris Ugwu, Vallerie Alexandra Putra, Vanya Bannihatti Kumar, Varsha Jeyarajalingam, Varvara Arzt, Vasudevan Nedumpozhimana, Viktoria Ondrejova, Viktoryia Horbik, Vishnu Vardhan Reddy Kummitha, Vuk Dinić, Walelign Tewabe Sewunetie, Winston Wu, Xiaojing Zhao, Yacouba Diarra, Yaniv Nikankin, Yash Mathur, Yixi Chen, Yiyuan Li, Yolanda Xavier, Yonatan Belinkov, Yusuf Ismail Abayomi, Zaid Alyafeai, Zhengyang Shan, Zhi Rui Tam, Zilu Tang, Zuzana Nadova, Baber Abbasi, Stella Biderman, David Stap, Duygu Ataman, Fabian Schmidt, Hila Gonen, Jiayi Wang, David Ifeoluwa Adelani
cs.AI
초록
현재까지 많은 언어와 문화를 포괄하는 대규모 언어 모델(LLM)용 문화 특화 평가 벤치마크는 거의 존재하지 않는다. 본 논문에서는 전 세계 65개국 출신 연구자 335명이 직접 수작업으로 구축한 100개 이상의 언어를 대상으로 하는 참여형 상식 추론 벤치마크인 Global PIQA를 소개한다. Global PIQA에 포함된 116개 언어 변이는 5개 대륙, 14개 어족, 23개 문자 체계를 아우른다. Global PIQA의 비병렬 분할 데이터셋에서는 예시의 50% 이상이 지역 음식, 관습, 전통 또는 기타 문화 특화 요소를 참조하고 있다. 우리는 최첨단 LLM이 전체적으로 Global PIQA에서 우수한 성능을 보이지만, 저자원 언어에서는 상대적으로 낮은 성능(무작위 추론 정확도 50% 대비 최대 37% 정확도 격차)을 나타낸다는 사실을 확인했다. 오픈 모델은 일반적으로 사유 모델보다 낮은 성능을 보였다. Global PIQA는 복잡한 추론이나 전문 지식과 같이 널리 논의되는 능력과 함께, 많은 언어와 문화에서 일상적 지식이 여전히 개선이 필요한 영역임을 강조한다. LLM 평가 도구로서의 활용을 넘어, Global PIQA가 인간 언어가 내재된 문화의 광범위한 다양성을 엿볼 수 있는 창이 되기를 기대한다.
English
To date, there exist almost no culturally-specific evaluation benchmarks for
large language models (LLMs) that cover a large number of languages and
cultures. In this paper, we present Global PIQA, a participatory commonsense
reasoning benchmark for over 100 languages, constructed by hand by 335
researchers from 65 countries around the world. The 116 language varieties in
Global PIQA cover five continents, 14 language families, and 23 writing
systems. In the non-parallel split of Global PIQA, over 50% of examples
reference local foods, customs, traditions, or other culturally-specific
elements. We find that state-of-the-art LLMs perform well on Global PIQA in
aggregate, but they exhibit weaker performance in lower-resource languages (up
to a 37% accuracy gap, despite random chance at 50%). Open models generally
perform worse than proprietary models. Global PIQA highlights that in many
languages and cultures, everyday knowledge remains an area for improvement,
alongside more widely-discussed capabilities such as complex reasoning and
expert knowledge. Beyond its uses for LLM evaluation, we hope that Global PIQA
provides a glimpse into the wide diversity of cultures in which human language
is embedded.