LLM, расширенные LLM: Расширение возможностей через композицию
LLM Augmented LLMs: Expanding Capabilities through Composition
January 4, 2024
Авторы: Rachit Bansal, Bidisha Samanta, Siddharth Dalmia, Nitish Gupta, Shikhar Vashishth, Sriram Ganapathy, Abhishek Bapna, Prateek Jain, Partha Talukdar
cs.AI
Аннотация
Фундаментальные модели с миллиардами параметров, обученные на больших корпусах данных, продемонстрировали значительные способности в различных областях. Однако из-за их монолитной структуры их расширение или добавление новых навыков является сложной и дорогостоящей задачей. С другой стороны, благодаря их способности к адаптации, создаются новые экземпляры этих моделей, ориентированные на новые области и задачи. В данной работе мы исследуем проблему эффективного и практического объединения существующих фундаментальных моделей с более специализированными моделями для обеспечения новых возможностей. С этой целью мы предлагаем CALM — Composition to Augment Language Models (Композиция для расширения языковых моделей), которая вводит кросс-внимание между моделями для объединения их представлений и обеспечения новых возможностей. Ключевые особенности CALM: (i) Масштабирование крупных языковых моделей (LLM) для новых задач за счет «повторного использования» существующих LLM с добавлением небольшого количества дополнительных параметров и данных, (ii) Веса существующих моделей остаются неизменными, что сохраняет их текущие возможности, и (iii) Применимость к различным областям и настройкам. Мы показываем, что расширение модели PaLM2-S с помощью меньшей модели, обученной на малоресурсных языках, приводит к абсолютному улучшению до 13% в задачах, таких как перевод на английский язык и арифметические рассуждения для малоресурсных языков. Аналогично, когда PaLM2-S расширяется с помощью модели, специализированной на коде, мы наблюдаем относительное улучшение на 40% по сравнению с базовой моделью в задачах генерации и объяснения кода — на уровне полностью дообученных аналогов.
English
Foundational models with billions of parameters which have been trained on
large corpora of data have demonstrated non-trivial skills in a variety of
domains. However, due to their monolithic structure, it is challenging and
expensive to augment them or impart new skills. On the other hand, due to their
adaptation abilities, several new instances of these models are being trained
towards new domains and tasks. In this work, we study the problem of efficient
and practical composition of existing foundation models with more specific
models to enable newer capabilities. To this end, we propose CALM --
Composition to Augment Language Models -- which introduces cross-attention
between models to compose their representations and enable new capabilities.
Salient features of CALM are: (i) Scales up LLMs on new tasks by 're-using'
existing LLMs along with a few additional parameters and data, (ii) Existing
model weights are kept intact, and hence preserves existing capabilities, and
(iii) Applies to diverse domains and settings. We illustrate that augmenting
PaLM2-S with a smaller model trained on low-resource languages results in an
absolute improvement of up to 13\% on tasks like translation into English and
arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is
augmented with a code-specific model, we see a relative improvement of 40\%
over the base model for code generation and explanation tasks -- on-par with
fully fine-tuned counterparts.