ChatPaper.aiChatPaper

Cube: Взгляд Roblox на 3D-интеллект

Cube: A Roblox View of 3D Intelligence

March 19, 2025
Авторы: Foundation AI Team, Kiran Bhat, Nishchaie Khanna, Karun Channa, Tinghui Zhou, Yiheng Zhu, Xiaoxia Sun, Charles Shang, Anirudh Sudarshan, Maurice Chu, Daiqing Li, Kangle Deng, Jean-Philippe Fauconnier, Tijmen Verhulsdonck, Maneesh Agrawala, Kayvon Fatahalian, Alexander Weiss, Christian Reiser, Ravi Kiran Chirravuri, Ravali Kandur, Alejandro Pelaez, Akash Garg, Michael Palleschi, Jessica Wang, Skylar Litz, Leon Liu, Anying Li, David Harmon, Derek Liu, Liangjun Feng, Denis Goupil, Lukas Kuczynski, Jihyun Yoon, Naveen Marri, Peiye Zhuang, Yinan Zhang, Brian Yin, Haomiao Jiang, Marcel van Workum, Thomas Lane, Bryce Erickson, Salil Pathare, Kyle Price, Anupam Singh, David Baszucki
cs.AI

Аннотация

Фундаментальные модели, обученные на огромных объемах данных, продемонстрировали выдающиеся способности к рассуждению и генерации в областях текста, изображений, аудио и видео. Наша цель в Roblox — создать такую фундаментальную модель для 3D-интеллекта, которая сможет поддерживать разработчиков в создании всех аспектов опыта Roblox: от генерации 3D-объектов и сцен до риггинга персонажей для анимации и создания программных скриптов, описывающих поведение объектов. Мы обсуждаем три ключевых требования к проектированию такой 3D-фундаментальной модели и представляем наш первый шаг на пути к её созданию. Мы предполагаем, что 3D-геометрические формы будут основным типом данных, и описываем наше решение для 3D-токенизатора форм. Мы показываем, как наша схема токенизации может быть использована в приложениях для генерации текста в форму, формы в текст и текста в сцену. Мы демонстрируем, как эти приложения могут взаимодействовать с существующими большими языковыми моделями (LLM) для анализа сцен и рассуждений. В заключение мы обсуждаем наш путь к созданию полностью унифицированной фундаментальной модели для 3D-интеллекта.
English
Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.

Summary

AI-Generated Summary

PDF292March 20, 2025