ChatPaper.aiChatPaper

Каждый шаг имеет значение: масштабирование обучения с подкреплением для триллион-масштабной модели мышления

Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model

October 21, 2025
Авторы: Ling Team, Anqi Shen, Baihui Li, Bin Hu, Bin Jing, Cai Chen, Chao Huang, Chao Zhang, Chaokun Yang, Cheng Lin, Chengyao Wen, Congqi Li, Deng Zhao, Dingbo Yuan, Donghai You, Fagui Mao, Fanzhuang Meng, Feng Xu, Guojie Li, Guowei Wang, Hao Dai, Haonan Zheng, Hong Liu, Jia Guo, Jiaming Liu, Jian Liu, Jianhao Fu, Jiannan Shi, Jianwen Wang, Jianxin Lai, Jin Yang, Jun Mei, Jun Zhou, Junbo Zhao, Junping Zhao, Kuan Xu, Le Su, Lei Chen, Li Tang, Liang Jiang, Liangcheng Fu, Lianhao Xu, Linfeng Shi, Lisha Liao, Longfei Zheng, Meng Li, Mingchun Chen, Qi Zuo, Qiang Cheng, Qianggang Cao, Qitao Shi, Quanrui Guo, Senlin Zhu, Shaofei Wang, Shaomian Zheng, Shuaicheng Li, Shuwei Gu, Siba Chen, Tao Wu, Tao Zhang, Tianyu Zhang, Tianyu Zhou, Tiwei Bie, Tongkai Yang, Wang Hong, Wang Ren, Weihua Chen, Wenbo Yu, Wengang Zheng, Xiangchun Wang, Xiaodong Yan, Xiaopei Wan, Xin Zhao, Xinyu Kong, Xinyu Tang, Xudong Han, Xudong Wang, Xuemin Yang, Xueyu Hu, Yalin Zhang, Yan Sun, Yicheng Shan, Yilong Wang, Yingying Xu, Yongkang Liu, Yongzhen Guo, Yuanyuan Wang, Yuchen Yan, Yuefan Wang, Yuhong Guo, Zehuan Li, Zhankai Xu, Zhe Li, Zhenduo Zhang, Zhengke Gui, Zhenxuan Pan, Zhenyu Huang, Zhenzhong Lan, Zhiqiang Ding, Zhiqiang Zhang, Zhixun Li, Zhizhen Liu, Zihao Wang, Zujie Wen
cs.AI

Аннотация

Мы представляем Ring-1T — первую открытую модель мышления с триллионным масштабом параметров, соответствующую современным стандартам. Модель включает 1 триллион общих параметров и активирует примерно 50 миллиардов на каждый токен. Обучение таких моделей на триллионном масштабе параметров ставит беспрецедентные задачи, включая рассогласование между обучением и выводом, неэффективность обработки последовательностей и узкие места в системе обучения с подкреплением (RL). Для решения этих проблем мы внедряем три взаимосвязанных инновации: (1) IcePop стабилизирует RL-обучение за счет маскирования и ограничения расхождений на уровне токенов, устраняя нестабильность, вызванную несоответствием между обучением и выводом; (2) C3PO++ повышает эффективность использования ресурсов для длинных последовательностей при ограниченном бюджете токенов за счет их динамического разделения, обеспечивая высокую временную эффективность; и (3) ASystem — высокопроизводительный RL-фреймворк, разработанный для преодоления системных узких мест, препятствующих обучению моделей с триллионным масштабом параметров. Ring-1T демонстрирует прорывные результаты на ключевых тестах: 93,4 на AIME-2025, 86,72 на HMMT-2025, 2088 на CodeForces и 55,94 на ARC-AGI-v1. Особенно примечателен результат уровня серебряной медали на IMO-2025, подчеркивающий исключительные способности модели к рассуждению. Предоставляя полную 1T-параметрическую модель MoE сообществу, мы даем исследователям прямой доступ к передовым возможностям рассуждения. Этот вклад знаменует важный этап в демократизации крупномасштабного интеллекта рассуждений и устанавливает новый стандарт для производительности открытых моделей.
English
We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.
PDF512October 22, 2025