ChatPaper.aiChatPaper

In-Context Learning Creates Task Vectors

October 24, 2023
Authors: Roee Hendel, Mor Geva, Amir Globerson
cs.AI

Abstract

In-context learning (ICL) in Large Language Models (LLMs) has emerged as a powerful new learning paradigm. However, its underlying mechanism is still not well understood. In particular, it is challenging to map it to the "standard" machine learning framework, where one uses a training set S to find a best-fitting function f(x) in some hypothesis class. Here we make progress on this problem by showing that the functions learned by ICL often have a very simple structure: they correspond to the transformer LLM whose only inputs are the query x and a single "task vector" calculated from the training set. Thus, ICL can be seen as compressing S into a single task vector theta(S) and then using this task vector to modulate the transformer to produce the output. We support the above claim via comprehensive experiments across a range of models and tasks.

PDF438December 15, 2024