ChatPaper.aiChatPaper

Phi-3 Safety Post-Training: Aligning Language Models with a "Break-Fix" Cycle

July 18, 2024
Authors: Emman Haider, Daniel Perez-Becker, Thomas Portet, Piyush Madan, Amit Garg, David Majercak, Wen Wen, Dongwoo Kim, Ziyi Yang, Jianwen Zhang, Hiteshi Sharma, Blake Bullwinkel, Martin Pouliot, Amanda Minnich, Shiven Chawla, Solianna Herrera, Shahed Warreth, Maggie Engler, Gary Lopez, Nina Chikanov, Raja Sekhar Rao Dheekonda, Bolor-Erdene Jagdagdorj, Roman Lutz, Richard Lundeen, Tori Westerhoff, Pete Bryan, Christian Seifert, Ram Shankar Siva Kumar, Andrew Berkley, Alex Kessler
cs.AI

Abstract

Recent innovations in language model training have demonstrated that it is possible to create highly performant models that are small enough to run on a smartphone. As these models are deployed in an increasing number of domains, it is critical to ensure that they are aligned with human preferences and safety considerations. In this report, we present our methodology for safety aligning the Phi-3 series of language models. We utilized a "break-fix" cycle, performing multiple rounds of dataset curation, safety post-training, benchmarking, red teaming, and vulnerability identification to cover a variety of harm areas in both single and multi-turn scenarios. Our results indicate that this approach iteratively improved the performance of the Phi-3 models across a wide range of responsible AI benchmarks.

Summary

AI-Generated Summary

PDF122November 28, 2024