ChatPaper.aiChatPaper

UnicEdit-10M: A Dataset and Benchmark Breaking the Scale-Quality Barrier via Unified Verification for Reasoning-Enriched Edits

December 1, 2025
Authors: Keming Ye, Zhipeng Huang, Canmiao Fu, Qingyang Liu, Jiani Cai, Zheqi Lv, Chen Li, Jing Lyu, Zhou Zhao, Shengyu Zhang
cs.AI

Abstract

With the rapid advances of powerful multimodal models such as GPT-4o, Nano Banana, and Seedream 4.0 in Image Editing, the performance gap between closed-source and open-source models is widening, primarily due to the scarcity of large-scale, high-quality training data and comprehensive benchmarks capable of diagnosing model weaknesses across diverse editing behaviors. Existing data construction methods face a scale-quality trade-off: human annotations are high-quality but not scalable, while automated pipelines suffer from error propagation and noise. To address this, we introduce a lightweight data pipeline that replaces multi-toolchains with an end-to-end model and a unified post-verification stage. For scalable quality control, we train a 7B dual-task expert model, Qwen-Verify, for efficient failure detection and instruction recaptioning. This pipeline yields UnicEdit-10M, a 10M-scale dataset spanning diverse basic and complex editing tasks. We also propose UnicBench, a general benchmark that extends beyond basic edits to explicitly assess spatial and knowledge-driven reasoning. To enable fine-grained diagnosis, we introduce novel metrics, including Non-edit Consistency and Reasoning Accuracy. Our analysis of mainstream models on UnicBench reveals their limitations and provides clear directions for future research.

PDF11December 4, 2025