ChatPaper.aiChatPaper

Forecasting Time Series with LLMs via Patch-Based Prompting and Decomposition

June 15, 2025
Authors: Mayank Bumb, Anshul Vemulapalli, Sri Harsha Vardhan Prasad Jella, Anish Gupta, An La, Ryan A. Rossi, Hongjie Chen, Franck Dernoncourt, Nesreen K. Ahmed, Yu Wang
cs.AI

Abstract

Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.

PDF22June 17, 2025