ChatPaper.aiChatPaper

GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling

June 27, 2025
Authors: Tianhao Chen, Xin Xu, Zijing Liu, Pengxiang Li, Xinyuan Song, Ajay Kumar Jaiswal, Fan Zhang, Jishan Hu, Yang Wang, Hao Chen, Shizhe Diao, Shiwei Liu, Yu Li, Yin Lu, Can Yang
cs.AI

Abstract

Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.

PDF21June 30, 2025