ChatPaper.aiChatPaper

Learning Real-World Action-Video Dynamics with Heterogeneous Masked Autoregression

February 6, 2025
Authors: Lirui Wang, Kevin Zhao, Chaoqi Liu, Xinlei Chen
cs.AI

Abstract

We propose Heterogeneous Masked Autoregression (HMA) for modeling action-video dynamics to generate high-quality data and evaluation in scaling robot learning. Building interactive video world models and policies for robotics is difficult due to the challenge of handling diverse settings while maintaining computational efficiency to run in real time. HMA uses heterogeneous pre-training from observations and action sequences across different robotic embodiments, domains, and tasks. HMA uses masked autoregression to generate quantized or soft tokens for video predictions. \ourshort achieves better visual fidelity and controllability than the previous robotic video generation models with 15 times faster speed in the real world. After post-training, this model can be used as a video simulator from low-level action inputs for evaluating policies and generating synthetic data. See this link https://liruiw.github.io/hma for more information.

Summary

AI-Generated Summary

PDF63February 7, 2025