ChatPaper.aiChatPaper

Listener-Rewarded Thinking in VLMs for Image Preferences

June 28, 2025
Authors: Alexander Gambashidze, Li Pengyi, Matvey Skripkin, Andrey Galichin, Anton Gusarov, Konstantin Sobolev, Andrey Kuznetsov, Ivan Oseledets
cs.AI

Abstract

Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.

PDF181July 1, 2025