ChatPaper.aiChatPaper

MedSAMix: A Training-Free Model Merging Approach for Medical Image Segmentation

August 14, 2025
Authors: Yanwu Yang, Guinan Su, Jiesi Hu, Francesco Sammarco, Jonas Geiping, Thomas Wolfers
cs.AI

Abstract

Universal medical image segmentation models have emerged as a promising paradigm due to their strong generalizability across diverse tasks, showing great potential for a wide range of clinical applications. This potential has been partly driven by the success of general-purpose vision models such as the Segment Anything Model (SAM), which has inspired the development of various fine-tuned variants for medical segmentation tasks. However, fine-tuned variants like MedSAM are trained on comparatively limited medical imaging data that often suffers from heterogeneity, scarce annotations, and distributional shifts. These challenges limit their ability to generalize across a wide range of medical segmentation tasks. In this regard, we propose MedSAMix, a training-free model merging method that integrates the strengths of both generalist models (e.g., SAM) and specialist models (e.g., MedSAM) for medical image segmentation. In contrast to traditional model merging approaches that rely on manual configuration and often result in suboptimal outcomes, we propose a zero-order optimization method to automatically discover optimal layer-wise merging solutions. Furthermore, for clinical applications, we develop two regimes to meet the demand of domain-specificity and generalizability in different scenarios by single-task optimization and multi-objective optimization respectively. Extensive evaluations on 25 medical segmentation tasks demonstrate that MedSAMix effectively mitigates model bias and consistently improves performance in both domain-specific accuracy and generalization, achieving improvements of 6.67% on specialized tasks and 4.37% on multi-task evaluations.

PDF21August 20, 2025