ChatPaper.aiChatPaper

Cluster and Predict Latents Patches for Improved Masked Image Modeling

February 12, 2025
Authors: Timothée Darcet, Federico Baldassarre, Maxime Oquab, Julien Mairal, Piotr Bojanowski
cs.AI

Abstract

Masked Image Modeling (MIM) offers a promising approach to self-supervised representation learning, however existing MIM models still lag behind the state-of-the-art. In this paper, we systematically analyze target representations, loss functions, and architectures, to introduce CAPI - a novel pure-MIM framework that relies on the prediction of latent clusterings. Our approach leverages a clustering-based loss, which is stable to train, and exhibits promising scaling properties. Our ViT-L backbone, CAPI, achieves 83.8% accuracy on ImageNet and 32.1% mIoU on ADE20K with simple linear probes, substantially outperforming previous MIM methods and approaching the performance of the current state-of-the-art, DINOv2. We release all our code and models.

Summary

AI-Generated Summary

PDF42February 17, 2025