ChatPaper.aiChatPaper

ToolRM: Outcome Reward Models for Tool-Calling Large Language Models

September 15, 2025
Authors: Mayank Agarwal, Ibrahim Abdelaziz, Kinjal Basu, Merve Unuvar, Luis A. Lastras, Yara Rizk, Pavan Kapanipathi
cs.AI

Abstract

As large language models (LLMs) increasingly interact with external tools, reward modeling for tool use has become a critical yet underexplored area. Existing reward models, trained primarily on natural language outputs, struggle to evaluate tool-based reasoning and execution. To quantify this gap, we introduce FC-RewardBench, the first benchmark designed to systematically assess reward models' performance in tool-calling scenarios. Our analysis shows that current reward models often miss key signals of effective tool use, highlighting the need for domain-specific modeling. To address this, we propose a training framework for outcome-based reward models using data synthesized from permissively licensed, open-weight LLMs. We train models ranging from 1.7B to 14B parameters and evaluate them across seven out-of-domain benchmarks. These models consistently outperform general-purpose baselines, achieving up to 25\% average improvement in downstream task performance and enabling data-efficient fine-tuning through reward-guided filtering.

PDF22September 17, 2025