ChatPaper.aiChatPaper

AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use

May 19, 2025
Authors: Yaotian Yang, Yiwen Tang, Yizhe Chen, Xiao Chen, Jiangjie Qiu, Hao Xiong, Haoyu Yin, Zhiyao Luo, Yifei Zhang, Sijia Tao, Wentao Li, Qinghua Zhang, Yuqiang Li, Wanli Ouyang, Bin Zhao, Xiaonan Wang, Fei Wei
cs.AI

Abstract

Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

Summary

AI-Generated Summary

PDF62May 22, 2025