ChatPaper.aiChatPaper

LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training

September 28, 2025
Authors: Xiang An, Yin Xie, Kaicheng Yang, Wenkang Zhang, Xiuwei Zhao, Zheng Cheng, Yirui Wang, Songcen Xu, Changrui Chen, Chunsheng Wu, Huajie Tan, Chunyuan Li, Jing Yang, Jie Yu, Xiyao Wang, Bin Qin, Yumeng Wang, Zizhen Yan, Ziyong Feng, Ziwei Liu, Bo Li, Jiankang Deng
cs.AI

Abstract

We present LLaVA-OneVision-1.5, a novel family of Large Multimodal Models (LMMs) that achieve state-of-the-art performance with significantly reduced computational and financial costs. Different from the existing works, LLaVA-OneVision-1.5 provides an open, efficient, and reproducible framework for building high-quality vision-language models entirely from scratch. The LLaVA-OneVision-1.5 release comprises three primary components: (1) Large-Scale Curated Datasets: We construct an 85M concept-balanced pretraining dataset LLaVA-OneVision-1.5-Mid-Traning and a meticulously curated 26M instruction dataset LLaVA-OneVision-1.5-Instruct, collectively encompassing 64B compressed multimodal tokens. (2) Efficient Training Framework: We develop a complete end-to-end efficient training framework leveraging an offline parallel data packing strategy to facilitate the training of LLaVA-OneVision-1.5 within a $16,000 budget. (3) State-of-the-art Performance: Experimental results demonstrate that LLaVA-OneVision1.5 yields exceptionally competitive performance across a broad range of downstream tasks. Specifically, LLaVA-OneVision-1.5-8B outperforms Qwen2.5-VL-7B on 18 of 27 benchmarks, and LLaVA-OneVision-1.5-4B surpasses Qwen2.5-VL-3B on all 27 benchmarks. We anticipate releasing LLaVA-OneVision-1.5-RL shortly and encourage the community to await further updates.

PDF243September 30, 2025