ChatPaper.aiChatPaper

NarraScore: Bridging Visual Narrative and Musical Dynamics via Hierarchical Affective Control

February 9, 2026
Authors: Yufan Wen, Zhaocheng Liu, YeGuo Hua, Ziyi Guo, Lihua Zhang, Chun Yuan, Jian Wu
cs.AI

Abstract

Synthesizing coherent soundtracks for long-form videos remains a formidable challenge, currently stalled by three critical impediments: computational scalability, temporal coherence, and, most critically, a pervasive semantic blindness to evolving narrative logic. To bridge these gaps, we propose NarraScore, a hierarchical framework predicated on the core insight that emotion serves as a high-density compression of narrative logic. Uniquely, we repurpose frozen Vision-Language Models (VLMs) as continuous affective sensors, distilling high-dimensional visual streams into dense, narrative-aware Valence-Arousal trajectories. Mechanistically, NarraScore employs a Dual-Branch Injection strategy to reconcile global structure with local dynamism: a Global Semantic Anchor ensures stylistic stability, while a surgical Token-Level Affective Adapter modulates local tension via direct element-wise residual injection. This minimalist design bypasses the bottlenecks of dense attention and architectural cloning, effectively mitigating the overfitting risks associated with data scarcity. Experiments demonstrate that NarraScore achieves state-of-the-art consistency and narrative alignment with negligible computational overhead, establishing a fully autonomous paradigm for long-video soundtrack generation.

PDF111February 14, 2026