ChatPaper.aiChatPaper

D^3QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection

October 7, 2025
Authors: Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, Jiwen Lu
cs.AI

Abstract

The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D^3QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D^3QE across different AR models, with robustness to real-world perturbations. Code is available at https://github.com/Zhangyr2022/D3QE{https://github.com/Zhangyr2022/D3QE}.

PDF12October 9, 2025