ChatPaper.aiChatPaper

RecGPT Technical Report

July 30, 2025
Authors: Chao Yi, Dian Chen, Gaoyang Guo, Jiakai Tang, Jian Wu, Jing Yu, Sunhao Dai, Wen Chen, Wenjun Yang, Yuning Jiang, Zhujin Gao, Bo Zheng, Chi Li, Dimin Wang, Dixuan Wang, Fan Li, Fan Zhang, Haibin Chen, Haozhuang Liu, Jialin Zhu, Jiamang Wang, Jiawei Wu, Jin Cui, Ju Huang, Kai Zhang, Kan Liu, Lang Tian, Liang Rao, Longbin Li, Lulu Zhao, Mao Zhang, Na He, Peiyang Wang, Qiqi Huang, Tao Luo, Wenbo Su, Xiaoxiao He, Xin Tong, Xu Chen, Xunke Xi, Yang Li, Yaxuan Wu, Yeqiu Yang, Yi Hu, Yinnan Song, Yuchen Li, Yujie Luo, Yujin Yuan, Yuliang Yan, Zhengyang Wang, Zhibo Xiao, Zhixin Ma, Zile Zhou
cs.AI

Abstract

Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.

PDF182August 1, 2025