ChatPaper.aiChatPaper

Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts

April 29, 2025
Authors: Hanhua Hong, Chenghao Xiao, Yang Wang, Yiqi Liu, Wenge Rong, Chenghua Lin
cs.AI

Abstract

Evaluating natural language generation (NLG) systems is challenging due to the diversity of valid outputs. While human evaluation is the gold standard, it suffers from inconsistencies, lack of standardisation, and demographic biases, limiting reproducibility. LLM-based evaluation offers a scalable alternative but is highly sensitive to prompt design, where small variations can lead to significant discrepancies. In this work, we propose an inversion learning method that learns effective reverse mappings from model outputs back to their input instructions, enabling the automatic generation of highly effective, model-specific evaluation prompts. Our method requires only a single evaluation sample and eliminates the need for time-consuming manual prompt engineering, thereby improving both efficiency and robustness. Our work contributes toward a new direction for more robust and efficient LLM-based evaluation.

Summary

AI-Generated Summary

PDF122May 5, 2025