ChatPaper.aiChatPaper

SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention

September 28, 2025
Authors: Jintao Zhang, Haoxu Wang, Kai Jiang, Shuo Yang, Kaiwen Zheng, Haocheng Xi, Ziteng Wang, Hongzhou Zhu, Min Zhao, Ion Stoica, Joseph E. Gonzalez, Jun Zhu, Jianfei Chen
cs.AI

Abstract

In Diffusion Transformer (DiT) models, particularly for video generation, attention latency is a major bottleneck due to the long sequence length and the quadratic complexity. We find that attention weights can be separated into two parts: a small fraction of large weights with high rank and the remaining weights with very low rank. This naturally suggests applying sparse acceleration to the first part and low-rank acceleration to the second. Based on this finding, we propose SLA (Sparse-Linear Attention), a trainable attention method that fuses sparse and linear attention to accelerate diffusion models. SLA classifies attention weights into critical, marginal, and negligible categories, applying O(N^2) attention to critical weights, O(N) attention to marginal weights, and skipping negligible ones. SLA combines these computations into a single GPU kernel and supports both forward and backward passes. With only a few fine-tuning steps using SLA, DiT models achieve a 20x reduction in attention computation, resulting in significant acceleration without loss of generation quality. Experiments show that SLA reduces attention computation by 95% without degrading end-to-end generation quality, outperforming baseline methods. In addition, we implement an efficient GPU kernel for SLA, which yields a 13.7x speedup in attention computation and a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.

PDF983September 30, 2025