ChatPaper.aiChatPaper

References Improve LLM Alignment in Non-Verifiable Domains

February 18, 2026
Authors: Kejian Shi, Yixin Liu, Peifeng Wang, Alexander R. Fabbri, Shafiq Joty, Arman Cohan
cs.AI

Abstract

While Reinforcement Learning with Verifiable Rewards (RLVR) has shown strong effectiveness in reasoning tasks, it cannot be directly applied to non-verifiable domains lacking ground-truth verifiers, such as LLM alignment. In this work, we investigate whether reference-guided LLM-evaluators can bridge this gap by serving as soft "verifiers". First, we design evaluation protocols that enhance LLM-based evaluators for LLM alignment using reference outputs. Through comprehensive experiments, we show that a reference-guided approach substantially improves the accuracy of less capable LLM-judges using references from frontier models; stronger LLM-judges can also be enhanced by high-quality (i.e., human-written) references. Building on these improved judges, we demonstrate the utility of high-quality references in alignment tuning, where LLMs guided with references are used as judges to self-improve. We show that reference-guided self-improvement yields clear gains over both direct SFT on reference outputs and self-improvement with reference-free judges, achieving performance comparable to training with ArmoRM, a strong finetuned reward model. Specifically, our method achieves 73.1% and 58.7% on AlpacaEval and Arena-Hard with Llama-3-8B-Instruct, and 70.0% and 74.1% with Qwen2.5-7B, corresponding to average absolute gains of +20.2 / +17.1 points over SFT distillation and +5.3 / +3.6 points over reference-free self-improvement on AlpacaEval / Arena-Hard. These results highlight the potential of using reference-guided LLM-evaluators to enable effective LLM post-training in non-verifiable domains.

PDF01February 21, 2026