ChatPaper.aiChatPaper

Chasing the Tail: Effective Rubric-based Reward Modeling for Large Language Model Post-Training

September 25, 2025
Authors: Junkai Zhang, Zihao Wang, Lin Gui, Swarnashree Mysore Sathyendra, Jaehwan Jeong, Victor Veitch, Wei Wang, Yunzhong He, Bing Liu, Lifeng Jin
cs.AI

Abstract

Reinforcement fine-tuning (RFT) often suffers from reward over-optimization, where a policy model hacks the reward signals to achieve high scores while producing low-quality outputs. Our theoretical analysis shows that the key lies in reward misspecification at the high-reward tail: the inability to reliably distinguish Excellent responses from merely Great ones. This motivate us to focus on the high-reward region. However, such tail examples are scarce under the base LLM. While off-policy exemplars (e.g. from stronger models or rewrites) are easier to obtain, naively training on them yields a misspecified reward for the policy we aim to align. To address this, we study rubric-based rewards. By design, rubrics can leverage off-policy examples while remaining insensitive to their artifacts. To elicit rubrics that capture the high-reward tail, we highlight the importance of distinguishing among great and diverse responses, and introduce a workflow to implement this idea. We empirically demonstrate that rubric-based rewards substantially mitigate reward over-optimization and deliver effective LLM post-training improvements. Our code can be accessed at https://github.com/Jun-Kai-Zhang/rubrics.git .

PDF82September 29, 2025