ChatPaper.aiChatPaper

Uncertainty-Aware Gradient Signal-to-Noise Data Selection for Instruction Tuning

January 20, 2026
Authors: Zhihang Yuan, Chengyu Yue, Long Huang, Litu Ou, Lei Shi
cs.AI

Abstract

Instruction tuning is a standard paradigm for adapting large language models (LLMs), but modern instruction datasets are large, noisy, and redundant, making full-data fine-tuning costly and often unnecessary. Existing data selection methods either build expensive gradient datastores or assign static scores from a weak proxy, largely ignoring evolving uncertainty, and thus missing a key source of LLM interpretability. We propose GRADFILTERING, an objective-agnostic, uncertainty-aware data selection framework that utilizes a small GPT-2 proxy with a LoRA ensemble and aggregates per-example gradients into a Gradient Signal-to-Noise Ratio (G-SNR) utility. Our method matches or surpasses random subsets and strong baselines in most LLM-as-a-judge evaluations as well as in human assessment. Moreover, GRADFILTERING-selected subsets converge faster than competitive filters under the same compute budget, reflecting the benefit of uncertainty-aware scoring.

PDF21January 22, 2026