ChatPaper.aiChatPaper

PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts

August 13, 2025
Authors: Mo Yu, Tsz Ting Chung, Chulun Zhou, Tong Li, Rui Lu, Jiangnan Li, Liyan Xu, Haoshu Lu, Ning Zhang, Jing Li, Jie Zhou
cs.AI

Abstract

We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.

PDF131August 15, 2025