ChatPaper.aiChatPaper

On the Relationship Between Representation Geometry and Generalization in Deep Neural Networks

January 28, 2026
Authors: Sumit Yadav
cs.AI

Abstract

We investigate the relationship between representation geometry and neural network performance. Analyzing 52 pretrained ImageNet models across 13 architecture families, we show that effective dimension -- an unsupervised geometric metric -- strongly predicts accuracy. Output effective dimension achieves partial r=0.75 (p < 10^(-10)) after controlling for model capacity, while total compression achieves partial r=-0.72. These findings replicate across ImageNet and CIFAR-10, and generalize to NLP: effective dimension predicts performance for 8 encoder models on SST-2/MNLI and 15 decoder-only LLMs on AG News (r=0.69, p=0.004), while model size does not (r=0.07). We establish bidirectional causality: degrading geometry via noise causes accuracy loss (r=-0.94, p < 10^(-9)), while improving geometry via PCA maintains accuracy across architectures (-0.03pp at 95% variance). This relationship is noise-type agnostic -- Gaussian, Uniform, Dropout, and Salt-and-pepper noise all show |r| > 0.90. These results establish that effective dimension provides domain-agnostic predictive and causal information about neural network performance, computed entirely without labels.

PDF34February 7, 2026