ChatPaper.aiChatPaper

BPDQ: Bit-Plane Decomposition Quantization on a Variable Grid for Large Language Models

February 4, 2026
Authors: Junyu Chen, Jungang Li, Jing Xiong, Wenjie Wang, Qingyao Yang, He Xiao, Zhen Li, Taiqiang Wu, Mengzhao Chen, Zhen Peng, Chaofan Tao, Long Shi, Hongxia Yang, Ngai Wong
cs.AI

Abstract

Large language model (LLM) inference is often bounded by memory footprint and memory bandwidth in resource-constrained deployments, making quantization a fundamental technique for efficient serving. While post-training quantization (PTQ) maintains high fidelity at 4-bit, it deteriorates at 2-3 bits. Fundamentally, existing methods enforce a shape-invariant quantization grid (e.g., the fixed uniform intervals of UINT2) for each group, severely restricting the feasible set for error minimization. To address this, we propose Bit-Plane Decomposition Quantization (BPDQ), which constructs a variable quantization grid via bit-planes and scalar coefficients, and iteratively refines them using approximate second-order information while progressively compensating quantization errors to minimize output discrepancy. In the 2-bit regime, BPDQ enables serving Qwen2.5-72B on a single RTX 3090 with 83.85% GSM8K accuracy (vs. 90.83% at 16-bit). Moreover, we provide theoretical analysis showing that the variable grid expands the feasible set, and that the quantization process consistently aligns with the optimization objective in Hessian-induced geometry. Code: github.com/KingdalfGoodman/BPDQ.

PDF62February 17, 2026