Daily curated AI research papers with translations
A long-term goal of language agents is to learn and improve through their own experience, ultimately outperforming humans in complex, real-world tasks. However, training agents from experience data with reinforcement learning remains difficult in many environments, which either lack verifiable rewards (e.g., websites) or require inefficient long-horizon rollouts (e.g., multi-turn tool use). As a result, most current agents rely on supervised fine-tuning on expert data, which is challenging to scale and generalizes poorly. This limitation stems from the nature of expert demonstrations: they capture only a narrow range of scenarios and expose the agent to limited environment diversity. We address this limitation with a middle-ground paradigm we call early experience: interaction data generated by the agent's own actions, where the resulting future states serve as supervision without reward signals. Within this paradigm we study two strategies of using such data: (1) Implicit world modeling, which uses collected states to ground the policy in environment dynamics; and (2) Self-reflection, where the agent learns from its suboptimal actions to improve reasoning and decision-making. We evaluate across eight diverse environments and multiple model families. Our approaches consistently improve effectiveness and out-of-domain generalization, highlighting the value of early experience. Moreover, in environments with verifiable rewards, our results provide promising signals that early experience offers a strong foundation for subsequent reinforcement learning, positioning it as a practical bridge between imitation learning and fully experience-driven agents.
While current Multimodal Large Language Models (MLLMs) have demonstrated proficiency in reasoning tasks such as mathematics and logic, their capacity for long-chain reflective reasoning, a prerequisite for solving complex real-world problems, remains largely underexplored. In this work, we first conduct an extensive empirical investigation to evaluate this capability. Leveraging a carefully designed data synthesis engine, we construct MM-HELIX, a multimodal benchmark consisting 1,260 samples of 42 challenging synthetic tasks that require iterative thinking and backtracking. Empirical results on this benchmark reveal that existing MLLMs exhibit significant performance deficits in long-chain reflective reasoning. To address this limitation, we generate post-training data and further explore learning paradigms for exploiting such data. We first develop the Step-Elicited Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of 100k high-quality, reflective reasoning traces for instruction-tuning stage. Given that standard Reinforcement Learning fails on complex tasks due to sparse reward signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adaptive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically unifies offline supervision and online optimization into a single stage. This strategy enables the model to learn from expert data when rewards are sparse and conduct independent exploration once proficient. When applied to the Qwen2.5-VL-7B baseline, our method achieves a +18.6\% accuracy improvement on MM-HELIX benchmark and demonstrates strong generalization with a +5.7\% average performance gain on general mathematic and logic tasks. Our work demonstrate that reflective reasoning in MLLMs can be effectively learned and generalized, paving the way for developing more capable MLLMs.
With the explosive growth of data, long-sequence modeling has become increasingly important in tasks such as natural language processing and bioinformatics. However, existing methods face inherent trade-offs between efficiency and memory. Recurrent neural networks suffer from gradient vanishing and explosion, making them hard to scale. Transformers can model global dependencies but are constrained by quadratic complexity. Recently, selective state-space models such as Mamba have demonstrated high efficiency with O(n) time and O(1) recurrent inference, yet their long-range memory decays exponentially. In this work, we conduct mathematical derivations and information-theoretic analysis to systematically uncover the memory decay mechanism of Mamba, answering a fundamental question: what is the nature of Mamba's long-range memory and how does it retain information? To quantify key information loss, we further introduce horizontal-vertical memory fidelity metrics that capture degradation both within and across layers. Inspired by how humans distill and retain salient information when reading long documents, we propose MemMamba, a novel architectural framework that integrates state summarization mechanism together with cross-layer and cross-token attention, which alleviates long-range forgetting while preserving linear complexity. MemMamba achieves significant improvements over existing Mamba variants and Transformers on long-sequence benchmarks such as PG19 and Passkey Retrieval, while delivering a 48% speedup in inference efficiency. Both theoretical analysis and empirical results demonstrate that MemMamba achieves a breakthrough in the complexity-memory trade-off, offering a new paradigm for ultra-long sequence modeling.
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.
The chemical reaction recommendation is to select proper reaction condition parameters for chemical reactions, which is pivotal to accelerating chemical science. With the rapid development of large language models (LLMs), there is growing interest in leveraging their reasoning and planning capabilities for reaction condition recommendation. Despite their success, existing methods rarely explain the rationale behind the recommended reaction conditions, limiting their utility in high-stakes scientific workflows. In this work, we propose ChemMAS, a multi-agent system that reframes condition prediction as an evidence-based reasoning task. ChemMAS decomposes the task into mechanistic grounding, multi-channel recall, constraint-aware agentic debate, and rationale aggregation. Each decision is backed by interpretable justifications grounded in chemical knowledge and retrieved precedents. Experiments show that ChemMAS achieves 20-35% gains over domain-specific baselines and outperforms general-purpose LLMs by 10-15% in Top-1 accuracy, while offering falsifiable, human-trustable rationales, which establishes a new paradigm for explainable AI in scientific discovery.
Recent Long-Context Language Models (LCLMs) can process hundreds of thousands of tokens in a single prompt, enabling new opportunities for knowledge-intensive multi-hop reasoning by integrating large sets of retrieved documents or, in some cases, directly all necessary information. However, simply feeding more documents into the context window fails to capture how evidence should be connected. We address this gap with thought templates, which recast reasoning as reusable thought caches, derived from prior problem solving traces, structuring how evidence is combined and guiding multi-hop inference with factual documents. To keep these templates effective, we propose an update strategy that iteratively refines templates derived from training data through natural-language feedback. Across diverse benchmarks and LCLM families, our approach delivers consistent gains over strong baselines in both retrieval-based and retrieval-free settings. Furthermore, we show that optimized templates can be distilled into smaller open-source models, demonstrating its broad applicability and transparent reasoning reuse. We refer to our framework as Thought Template Augmented LCLMs (ToTAL).
Recent studies on reasoning models explore the meta-awareness of language models, the ability to know how to think by itself. We argue that large reasoning models lack this meta-awareness property by proving severe misalignment between true rollouts and predicted meta information. We posit that aligning meta-prediction with true rollouts will lead to significant performance gains. To verify this hypothesis, we design a training pipeline that boosts Meta-Awareness via Self-Alignment (MASA), and prove that enhanced meta-awareness directly translates to improved accuracy. Unlike existing meta-cognitive reasoning models, our method does not require external training sources but leverages self-generated signals to train meta-awareness. Moreover, our method enables efficient training by i) filtering out zero-variance prompts that are either trivial or unsolvable and ii) cutting off lengthy rollouts when they are unlikely to lead to correct answers. The results are inspiring: our strategy yields significant improvements in both accuracy and training efficiency on in-domain tasks and shows strong generalization to out-of-domain benchmarks. More specifically, our method can speed up GRPO training by over 1.28x to reach the same performance, and achieve a 19.3% gain in accuracy on AIME25, and a 6.2 % average gain over six mathematics benchmarks. Training with meta-cognitive guidance enhances out-of-domain generalization, giving a 3.87 % boost on GPQA-Diamond and a 2.08 % overall accuracy gain across 13 benchmarks spanning logical, scientific, and coding domains.
Harnessing the power of LLMs requires a delicate dance between being helpful and harmless. This creates a fundamental tension between two competing challenges: vulnerability to adversarial attacks that elicit unsafe content, and a tendency for overrefusal on benign but sensitive prompts. Current approaches often navigate this dance with safeguard models that completely reject any content that contains unsafe portions. This approach cuts the music entirely-it may exacerbate overrefusals and fails to provide nuanced guidance for queries it refuses. To teach models a more coordinated choreography, we propose WaltzRL, a novel multi-agent reinforcement learning framework that formulates safety alignment as a collaborative, positive-sum game. WaltzRL jointly trains a conversation agent and a feedback agent, where the latter is incentivized to provide useful suggestions that improve the safety and helpfulness of the conversation agent's responses. At the core of WaltzRL is a Dynamic Improvement Reward (DIR) that evolves over time based on how well the conversation agent incorporates the feedback. At inference time, unsafe or overrefusing responses from the conversation agent are improved rather than discarded. The feedback agent is deployed together with the conversation agent and only engages adaptively when needed, preserving helpfulness and low latency on safe queries. Our experiments, conducted across five diverse datasets, demonstrate that WaltzRL significantly reduces both unsafe responses (e.g., from 39.0% to 4.6% on WildJailbreak) and overrefusals (from 45.3% to 9.9% on OR-Bench) compared to various baselines. By enabling the conversation and feedback agents to co-evolve and adaptively apply feedback, WaltzRL enhances LLM safety without degrading general capabilities, thereby advancing the Pareto front between helpfulness and harmlessness.
Recent advancements in instruction-based image editing and subject-driven generation have garnered significant attention, yet both tasks still face limitations in meeting practical user needs. Instruction-based editing relies solely on language instructions, which often fail to capture specific editing details, making reference images necessary. Meanwhile, subject-driven generation is limited to combining concrete objects or people, overlooking broader, abstract concepts. To address these challenges, we propose two novel tasks: multimodal instruction-based editing and generation. These tasks support both text and image instructions and extend the scope to include both concrete and abstract concepts, greatly enhancing their practical applications. We introduce DreamOmni2, tackling two primary challenges: data creation and model framework design. Our data synthesis pipeline consists of three steps: (1) using a feature mixing method to create extraction data for both abstract and concrete concepts, (2) generating multimodal instruction-based editing training data using the editing and extraction models, and (3) further applying the extraction model to create training data for multimodal instruction-based editing. For the framework, to handle multi-image input, we propose an index encoding and position encoding shift scheme, which helps the model distinguish images and avoid pixel confusion. Additionally, we introduce joint training with the VLM and our generation/editing model to better process complex instructions. In addition, we have proposed comprehensive benchmarks for these two new tasks to drive their development. Experiments show that DreamOmni2 has achieved impressive results. Models and codes will be released.
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textit{reasoning sparks}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of reasoning sparks is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a 60.17% average accuracy on five math benchmarks, an improvement of 2.66% over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
Large language models are emerging as powerful tools for scientific law discovery, a foundational challenge in AI-driven science. However, existing benchmarks for this task suffer from a fundamental methodological trilemma, forcing a trade-off between scientific relevance, scalability, and resistance to memorization. Furthermore, they oversimplify discovery as static function fitting, failing to capture the authentic scientific process of uncovering embedded laws through the interactive exploration of complex model systems. To address these critical gaps, we introduce NewtonBench, a benchmark comprising 324 scientific law discovery tasks across 12 physics domains. Our design mitigates the evaluation trilemma by using metaphysical shifts - systematic alterations of canonical laws - to generate a vast suite of problems that are scalable, scientifically relevant, and memorization-resistant. Moreover, we elevate the evaluation from static function fitting to interactive model discovery, requiring agents to experimentally probe simulated complex systems to uncover hidden principles. Our extensive experiment reveals a clear but fragile capability for discovery in frontier LLMs: this ability degrades precipitously with increasing system complexity and exhibits extreme sensitivity to observational noise. Notably, we uncover a paradoxical effect of tool assistance: providing a code interpreter can hinder more capable models by inducing a premature shift from exploration to exploitation, causing them to satisfice on suboptimal solutions. These results demonstrate that robust, generalizable discovery in complex, interactive environments remains the core challenge. By providing a scalable, robust, and scientifically authentic testbed, NewtonBench offers a crucial tool for measuring true progress and guiding the development of next-generation AI agents capable of genuine scientific discovery.
Recent advances in Large Language Model (LLM) agents have demonstrated their promising general capabilities. However, their performance in specialized real-world domains often degrades due to challenges in effectively integrating external tools and specific prompting strategies. While methods like agentic reinforcement learning have been proposed to address this, they typically rely on costly parameter updates, for example, through a process that uses Supervised Fine-Tuning (SFT) followed by a Reinforcement Learning (RL) phase with Group Relative Policy Optimization (GRPO) to alter the output distribution. However, we argue that LLMs can achieve a similar effect on the output distribution by learning experiential knowledge as a token prior, which is a far more lightweight approach that not only addresses practical data scarcity but also avoids the common issue of overfitting. To this end, we propose Training-Free Group Relative Policy Optimization (Training-Free GRPO), a cost-effective solution that enhances LLM agent performance without any parameter updates. Our method leverages the group relative semantic advantage instead of numerical ones within each group of rollouts, iteratively distilling high-quality experiential knowledge during multi-epoch learning on a minimal ground-truth data. Such knowledge serves as the learned token prior, which is seamlessly integrated during LLM API calls to guide model behavior. Experiments on mathematical reasoning and web searching tasks demonstrate that Training-Free GRPO, when applied to DeepSeek-V3.1-Terminus, significantly improves out-of-domain performance. With just a few dozen training samples, Training-Free GRPO outperforms fine-tuned small LLMs with marginal training data and cost.
Post-training for reasoning of large language models (LLMs) increasingly relies on verifiable rewards: deterministic checkers that provide 0-1 correctness signals. While reliable, such binary feedback is brittle--many tasks admit partially correct or alternative answers that verifiers under-credit, and the resulting all-or-nothing supervision limits learning. Reward models offer richer, continuous feedback, which can serve as a complementary supervisory signal to verifiers. We introduce HERO (Hybrid Ensemble Reward Optimization), a reinforcement learning framework that integrates verifier signals with reward-model scores in a structured way. HERO employs stratified normalization to bound reward-model scores within verifier-defined groups, preserving correctness while refining quality distinctions, and variance-aware weighting to emphasize challenging prompts where dense signals matter most. Across diverse mathematical reasoning benchmarks, HERO consistently outperforms RM-only and verifier-only baselines, with strong gains on both verifiable and hard-to-verify tasks. Our results show that hybrid reward design retains the stability of verifiers while leveraging the nuance of reward models to advance reasoning.
On-the-fly 3D reconstruction from monocular image sequences is a long-standing challenge in computer vision, critical for applications such as real-to-sim, AR/VR, and robotics. Existing methods face a major tradeoff: per-scene optimization yields high fidelity but is computationally expensive, whereas feed-forward foundation models enable real-time inference but struggle with accuracy and robustness. In this work, we propose ARTDECO, a unified framework that combines the efficiency of feed-forward models with the reliability of SLAM-based pipelines. ARTDECO uses 3D foundation models for pose estimation and point prediction, coupled with a Gaussian decoder that transforms multi-scale features into structured 3D Gaussians. To sustain both fidelity and efficiency at scale, we design a hierarchical Gaussian representation with a LoD-aware rendering strategy, which improves rendering fidelity while reducing redundancy. Experiments on eight diverse indoor and outdoor benchmarks show that ARTDECO delivers interactive performance comparable to SLAM, robustness similar to feed-forward systems, and reconstruction quality close to per-scene optimization, providing a practical path toward on-the-fly digitization of real-world environments with both accurate geometry and high visual fidelity. Explore more demos on our project page: https://city-super.github.io/artdeco/.
Parallel scaling has emerged as a powerful paradigm to enhance reasoning capabilities in large language models (LLMs) by generating multiple Chain-of-Thought (CoT) traces simultaneously. However, this approach introduces significant computational inefficiency due to inter-trace redundancy -- our analysis reveals that over 80% of parallel reasoning traces yield identical final answers, representing substantial wasted computation. To address this critical efficiency bottleneck, we propose DeepPrune, a novel framework that enables efficient parallel scaling through dynamic pruning. Our method features a specialized judge model trained with focal loss and oversampling techniques to accurately predict answer equivalence from partial reasoning traces which realizes 0.87 AUROC on equivalence prediction, combined with an online greedy clustering algorithm that dynamically prunes redundant paths while preserving answer diversity. Comprehensive evaluations across three challenging benchmarks (AIME 2024, AIME 2025, and GPQA) and multiple reasoning models demonstrate that DeepPrune achieves remarkable token reduction by over 80% compared to conventional consensus sampling on most cases, while maintaining competitive accuracy within 3 percentage points. Our work establishes a new standard for efficient parallel reasoning, making high-performance reasoning more efficient. Our code and data are here: https://deepprune.github.io/
Large language models have recently demonstrated significant gains in reasoning ability, often attributed to their capacity to generate longer chains of thought and engage in reflective reasoning. However, the contribution of reflections to performance improvement remains unclear. In this paper, we systematically analyze the rollouts of eight reasoning models on five mathematical datasets. We focus on reflective behaviours where the model has already produced an answer but continues reflecting before finalizing its output. Our analysis reveals that reflections are predominantly confirmatory and rarely alter the model's initial answer, a pattern consistent across models and datasets. To understand the role of reflections in training, we construct supervised fine-tuning (SFT) datasets with varying amounts of reflection steps. We observe that training models on rollouts with more reflection steps primarily enhances first-answer correctness rather than the ability to correct initially wrong answers through reflections. This motivates us to propose a question-aware early-stopping method that enhances inference-time token efficiency by stopping the reasoning process once a few plausible candidate answers are generated, thereby reducing unnecessary reflection steps. Motivated by this, we further propose to dynamically truncate the reflections after a candidate answer has appeared during generation, which reduces reasoning tokens by 24.5% across five mathematical datasets, within a 2.9% drop in accuracy.
Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.
Cascaded video super-resolution has emerged as a promising technique for decoupling the computational burden associated with generating high-resolution videos using large foundation models. Existing studies, however, are largely confined to text-to-video tasks and fail to leverage additional generative conditions beyond text, which are crucial for ensuring fidelity in multi-modal video generation. We address this limitation by presenting UniMMVSR, the first unified generative video super-resolution framework to incorporate hybrid-modal conditions, including text, images, and videos. We conduct a comprehensive exploration of condition injection strategies, training schemes, and data mixture techniques within a latent video diffusion model. A key challenge was designing distinct data construction and condition utilization methods to enable the model to precisely utilize all condition types, given their varied correlations with the target video. Our experiments demonstrate that UniMMVSR significantly outperforms existing methods, producing videos with superior detail and a higher degree of conformity to multi-modal conditions. We also validate the feasibility of combining UniMMVSR with a base model to achieve multi-modal guided generation of 4K video, a feat previously unattainable with existing techniques.
Compositional training has been the de-facto paradigm in existing Multimodal Large Language Models (MLLMs), where pre-trained vision encoders are connected with pre-trained LLMs through continuous multimodal pre-training. However, the multimodal scaling property of this paradigm remains difficult to explore due to the separated training. In this paper, we focus on the native training of MLLMs in an end-to-end manner and systematically study its design space and scaling property under a practical setting, i.e., data constraint. Through careful study of various choices in MLLM, we obtain the optimal meta-architecture that best balances performance and training cost. After that, we further explore the scaling properties of the native MLLM and indicate the positively correlated scaling relationship between visual encoders and LLMs. Based on these findings, we propose a native MLLM called NaViL, combined with a simple and cost-effective recipe. Experimental results on 14 multimodal benchmarks confirm the competitive performance of NaViL against existing MLLMs. Besides that, our findings and results provide in-depth insights for the future study of native MLLMs.
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
We address the task of video style transfer with diffusion models, where the goal is to preserve the context of an input video while rendering it in a target style specified by a text prompt. A major challenge is the lack of paired video data for supervision. We propose PickStyle, a video-to-video style transfer framework that augments pretrained video diffusion backbones with style adapters and benefits from paired still image data with source-style correspondences for training. PickStyle inserts low-rank adapters into the self-attention layers of conditioning modules, enabling efficient specialization for motion-style transfer while maintaining strong alignment between video content and style. To bridge the gap between static image supervision and dynamic video, we construct synthetic training clips from paired images by applying shared augmentations that simulate camera motion, ensuring temporal priors are preserved. In addition, we introduce Context-Style Classifier-Free Guidance (CS-CFG), a novel factorization of classifier-free guidance into independent text (style) and video (context) directions. CS-CFG ensures that context is preserved in generated video while the style is effectively transferred. Experiments across benchmarks show that our approach achieves temporally coherent, style-faithful, and content-preserving video translations, outperforming existing baselines both qualitatively and quantitatively.
With recent advances in Multimodal Large Language Models (MLLMs) showing strong visual understanding and reasoning, interest is growing in using them to improve the editing performance of diffusion models. Despite rapid progress, most studies lack an in-depth analysis of MLLM design choices. Moreover, the integration of MLLMs and diffusion models remains an open challenge in some difficult tasks, such as video editing. In this paper, we present InstructX, a unified framework for image and video editing. Specifically, we conduct a comprehensive study on integrating MLLMs and diffusion models for instruction-driven editing across diverse tasks. Building on this study, we analyze the cooperation and distinction between images and videos in unified modeling. (1) We show that training on image data can lead to emergent video editing capabilities without explicit supervision, thereby alleviating the constraints imposed by scarce video training data. (2) By incorporating modality-specific MLLM features, our approach effectively unifies image and video editing tasks within a single model. Extensive experiments demonstrate that our method can handle a broad range of image and video editing tasks and achieves state-of-the-art performance.
Reward model (RM) plays a pivotal role in aligning large language model (LLM) with human preferences. As real-world applications increasingly involve long history trajectories, e.g., LLM agent, it becomes indispensable to evaluate whether a model's responses are not only high-quality but also grounded in and consistent with the provided context. Yet, current RMs remain confined to short-context settings and primarily focus on response-level attributes (e.g., safety or helpfulness), while largely neglecting the critical dimension of long context-response consistency. In this work, we introduce Long-RewardBench, a benchmark specifically designed for long-context RM evaluation, featuring both Pairwise Comparison and Best-of-N tasks. Our preliminary study reveals that even state-of-the-art generative RMs exhibit significant fragility in long-context scenarios, failing to maintain context-aware preference judgments. Motivated by the analysis of failure patterns observed in model outputs, we propose a general multi-stage training strategy that effectively scales arbitrary models into robust Long-context RMs (LongRMs). Experiments show that our approach not only substantially improves performance on long-context evaluation but also preserves strong short-context capability. Notably, our 8B LongRM outperforms much larger 70B-scale baselines and matches the performance of the proprietary Gemini 2.5 Pro model.
Multimodal retrieval-augmented generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented, focusing on either text or images in isolation or on simplified multimodal setups that fail to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from 70k real-world PDF pages across eight domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates 1,600 multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, 20% of QA pairs are validated by multiple annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: (1) text-only, (2) image-only, (3) multimodal text-image fusion, and (4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
Large Language Models have demonstrated remarkable capabilities across diverse domains, yet significant challenges persist when deploying them as AI agents for real-world long-horizon tasks. Existing LLM agents suffer from a critical limitation: they are test-time static and cannot learn from experience, lacking the ability to accumulate knowledge and continuously improve on the job. To address this challenge, we propose MUSE, a novel agent framework that introduces an experience-driven, self-evolving system centered around a hierarchical Memory Module. MUSE organizes diverse levels of experience and leverages them to plan and execute long-horizon tasks across multiple applications. After each sub-task execution, the agent autonomously reflects on its trajectory, converting the raw trajectory into structured experience and integrating it back into the Memory Module. This mechanism enables the agent to evolve beyond its static pretrained parameters, fostering continuous learning and self-evolution. We evaluate MUSE on the long-horizon productivity benchmark TAC. It achieves new SOTA performance by a significant margin using only a lightweight Gemini-2.5 Flash model. Sufficient Experiments demonstrate that as the agent autonomously accumulates experience, it exhibits increasingly superior task completion capabilities, as well as robust continuous learning and self-evolution capabilities. Moreover, the accumulated experience from MUSE exhibits strong generalization properties, enabling zero-shot improvement on new tasks. MUSE establishes a new paradigm for AI agents capable of real-world productivity task automation.
This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.
While reinforcement learning methods such as Group Relative Preference Optimization (GRPO) have significantly enhanced Large Language Models, adapting them to diffusion models remains challenging. In particular, GRPO demands a stochastic policy, yet the most cost-effective diffusion samplers are based on deterministic ODEs. Recent work addresses this issue by using inefficient SDE-based samplers to induce stochasticity, but this reliance on model-agnostic Gaussian noise leads to slow convergence. To resolve this conflict, we propose Direct Group Preference Optimization (DGPO), a new online RL algorithm that dispenses with the policy-gradient framework entirely. DGPO learns directly from group-level preferences, which utilize relative information of samples within groups. This design eliminates the need for inefficient stochastic policies, unlocking the use of efficient deterministic ODE samplers and faster training. Extensive results show that DGPO trains around 20 times faster than existing state-of-the-art methods and achieves superior performance on both in-domain and out-of-domain reward metrics. Code is available at https://github.com/Luo-Yihong/DGPO.
Large Multimodal Models (LMMs) have achieved remarkable progress across various capabilities; however, complex video reasoning in the scientific domain remains a significant and challenging frontier. Current video benchmarks predominantly target general scenarios where perception/recognition is heavily relied on, while with relatively simple reasoning tasks, leading to saturation and thus failing to effectively evaluate advanced multimodal cognitive skills. To address this critical gap, we introduce SciVideoBench, a rigorous benchmark specifically designed to assess advanced video reasoning in scientific contexts. SciVideoBench consists of 1,000 carefully crafted multiple-choice questions derived from cutting-edge scientific experimental videos spanning over 25 specialized academic subjects and verified by a semi-automatic system. Each question demands sophisticated domain-specific knowledge, precise spatiotemporal perception, and intricate logical reasoning, effectively challenging models' higher-order cognitive abilities. Our evaluation highlights significant performance deficits in state-of-the-art proprietary and open-source LMMs, including Gemini 2.5 Pro and Qwen2.5-VL, indicating substantial room for advancement in video reasoning capabilities. Detailed analyses of critical factors such as reasoning complexity and visual grounding provide valuable insights and clear direction for future developments in LMMs, driving the evolution of truly capable multimodal AI co-scientists. We hope SciVideoBench could fit the interests of the community and help to push the boundary of cutting-edge AI for border science.
This work represents the first effort to scale up continuous-time consistency distillation to general application-level image and video diffusion models. Although continuous-time consistency model (sCM) is theoretically principled and empirically powerful for accelerating academic-scale diffusion, its applicability to large-scale text-to-image and video tasks remains unclear due to infrastructure challenges in Jacobian-vector product (JVP) computation and the limitations of standard evaluation benchmarks. We first develop a parallelism-compatible FlashAttention-2 JVP kernel, enabling sCM training on models with over 10 billion parameters and high-dimensional video tasks. Our investigation reveals fundamental quality limitations of sCM in fine-detail generation, which we attribute to error accumulation and the "mode-covering" nature of its forward-divergence objective. To remedy this, we propose the score-regularized continuous-time consistency model (rCM), which incorporates score distillation as a long-skip regularizer. This integration complements sCM with the "mode-seeking" reverse divergence, effectively improving visual quality while maintaining high generation diversity. Validated on large-scale models (Cosmos-Predict2, Wan2.1) up to 14B parameters and 5-second videos, rCM matches or surpasses the state-of-the-art distillation method DMD2 on quality metrics while offering notable advantages in diversity, all without GAN tuning or extensive hyperparameter searches. The distilled models generate high-fidelity samples in only 1sim4 steps, accelerating diffusion sampling by 15timessim50times. These results position rCM as a practical and theoretically grounded framework for advancing large-scale diffusion distillation.
While recent advances in reasoning models have demonstrated cognitive behaviors through reinforcement learning, existing approaches struggle to invoke deep reasoning capabilities in multi-turn agents with long-horizon interactions. We propose DeepMiner, a novel framework that elicits such abilities by introducing high-difficulty training tasks and dynamic context window. DeepMiner presents a reverse construction method to generate complex but verifiable question-answer pairs from authentic web sources, which ensures the challenge and reliability of training data while injecting cognitive capabilities into multi-turn reasoning scenarios. We further design an elegant yet effective dynamic context management strategy for both training and inference, utilizing sliding window mechanisms while eliminating the dependency on external summarization models, thereby efficiently empowering the model to handle continuously expanding long-horizon contexts. Through reinforcement learning on Qwen3-32B, we develop DeepMiner-32B, which achieves substantial performance improvements across multiple search agent benchmarks. DeepMiner attains 33.5% accuracy on BrowseComp-en, surpassing the previous best open-source agent by almost 20 percentage points, and demonstrates consistent improvements on BrowseComp-zh, XBench-DeepSearch, and GAIA. Notably, our dynamic context management enables sustained interactions of nearly 100 turns within standard 32k context length, effectively addressing the context limitations that constrain existing multi-turn interaction systems.
Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured natural language criteria that capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further improve reliability by enforcing preference-label consistency via rejection sampling to remove noisy rubrics. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 6.8%. These gains transfer to policy models on instruction-following and biomedical benchmarks. Our results show that rubrics provide scalable alignment signals that narrow the gap between costly human evaluation and automated reward modeling, enabling a new principle-driven paradigm for LLM alignment.
We propose ERA, a new paradigm that constrains the sampling entropy above given thresholds by applying specially designed activations to the outputs of models. Our approach demonstrates broad effectiveness across different domains: 1) for large language models(LLMs), boosting the AIME 2025 score for Qwen2.5-Math-7B by 37.4%; 2) for continuous control reinforcement learning agents, improving performance by more than 30% over strong baselines such as SAC on the challenging HumanoidBench; 3) for image classification, enhancing ImageNet top-1 accuracy by 0.69% for ResNet-50. These gains are achieved with a computational overhead of less than 7%. Our work validates output activation as a powerful tool for entropy control, opening a new direction for designing simpler and more robust algorithms.
The remarkable success of large language models (LLMs) stems from their ability to consolidate vast amounts of knowledge into the memory during pre-training and to retrieve it from the memory during inference, enabling advanced capabilities such as knowledge memorization, instruction-following and reasoning. However, the mechanisms of memory retrieval and consolidation in LLMs remain poorly understood. In this paper, we propose the function token hypothesis to explain the workings of LLMs: During inference, function tokens activate the most predictive features from context and govern next token prediction (memory retrieval). During pre-training, predicting the next tokens (usually content tokens) that follow function tokens increases the number of learned features of LLMs and updates the model parameters (memory consolidation). Function tokens here roughly correspond to function words in linguistics, including punctuation marks, articles, prepositions, and conjunctions, in contrast to content tokens. We provide extensive experimental evidence supporting this hypothesis. Using bipartite graph analysis, we show that a small number of function tokens activate the majority of features. Case studies further reveal how function tokens activate the most predictive features from context to direct next token prediction. We also find that during pre-training, the training loss is dominated by predicting the next content tokens following function tokens, which forces the function tokens to select the most predictive features from context.
The rapidly increasing computational cost of pretraining Large Language Models necessitates more efficient approaches. Numerous computational costs have been invested in existing well-trained checkpoints, but many of them remain underutilized due to engineering constraints or limited model capacity. To efficiently reuse this "sunk" cost, we propose to recycle pretrained checkpoints by expanding their parameter counts and continuing training. We propose orthogonal growth method well-suited for converged Mixture-of-Experts model: interpositional layer copying for depth growth and expert duplication with injected noise for width growth. To determine the optimal timing for such growth across checkpoints sequences, we perform comprehensive scaling experiments revealing that the final accuracy has a strong positive correlation with the amount of sunk cost, indicating that greater prior investment leads to better performance. We scale our approach to models with 70B parameters and over 1T training tokens, achieving 10.66% accuracy gain over training from scratch under the same additional compute budget. Our checkpoint recycling approach establishes a foundation for economically efficient large language model pretraining.
We present UP2You, the first tuning-free solution for reconstructing high-fidelity 3D clothed portraits from extremely unconstrained in-the-wild 2D photos. Unlike previous approaches that require "clean" inputs (e.g., full-body images with minimal occlusions, or well-calibrated cross-view captures), UP2You directly processes raw, unstructured photographs, which may vary significantly in pose, viewpoint, cropping, and occlusion. Instead of compressing data into tokens for slow online text-to-3D optimization, we introduce a data rectifier paradigm that efficiently converts unconstrained inputs into clean, orthogonal multi-view images in a single forward pass within seconds, simplifying the 3D reconstruction. Central to UP2You is a pose-correlated feature aggregation module (PCFA), that selectively fuses information from multiple reference images w.r.t. target poses, enabling better identity preservation and nearly constant memory footprint, with more observations. We also introduce a perceiver-based multi-reference shape predictor, removing the need for pre-captured body templates. Extensive experiments on 4D-Dress, PuzzleIOI, and in-the-wild captures demonstrate that UP2You consistently surpasses previous methods in both geometric accuracy (Chamfer-15%, P2S-18% on PuzzleIOI) and texture fidelity (PSNR-21%, LPIPS-46% on 4D-Dress). UP2You is efficient (1.5 minutes per person), and versatile (supports arbitrary pose control, and training-free multi-garment 3D virtual try-on), making it practical for real-world scenarios where humans are casually captured. Both models and code will be released to facilitate future research on this underexplored task. Project Page: https://zcai0612.github.io/UP2You
Achieving generalized in-hand object rotation remains a significant challenge in robotics, largely due to the difficulty of transferring policies from simulation to the real world. The complex, contact-rich dynamics of dexterous manipulation create a "reality gap" that has limited prior work to constrained scenarios involving simple geometries, limited object sizes and aspect ratios, constrained wrist poses, or customized hands. We address this sim-to-real challenge with a novel framework that enables a single policy, trained in simulation, to generalize to a wide variety of objects and conditions in the real world. The core of our method is a joint-wise dynamics model that learns to bridge the reality gap by effectively fitting limited amount of real-world collected data and then adapting the sim policy's actions accordingly. The model is highly data-efficient and generalizable across different whole-hand interaction distributions by factorizing dynamics across joints, compressing system-wide influences into low-dimensional variables, and learning each joint's evolution from its own dynamic profile, implicitly capturing these net effects. We pair this with a fully autonomous data collection strategy that gathers diverse, real-world interaction data with minimal human intervention. Our complete pipeline demonstrates unprecedented generality: a single policy successfully rotates challenging objects with complex shapes (e.g., animals), high aspect ratios (up to 5.33), and small sizes, all while handling diverse wrist orientations and rotation axes. Comprehensive real-world evaluations and a teleoperation application for complex tasks validate the effectiveness and robustness of our approach. Website: https://meowuu7.github.io/DexNDM/
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A^2Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed AnsF1 reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A^2Search achieves new state-of-the-art performance. With only a single rollout, A^2Search-7B yields an average AnsF1@1 score of 48.4% across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B (46.2%). Extensive analyses further show that A^2Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.
Efficient use of large language models (LLMs) is critical for deployment at scale: without adaptive routing, systems either overpay for strong models or risk poor performance from weaker ones. Selecting the right LLM for each query is fundamentally an online decision problem: models differ in strengths, prices fluctuate, and users value accuracy and cost differently. Yet most routers are trained offline with labels for all candidate models, an assumption that breaks in deployment, where only the outcome of the chosen model is observed. We bridge this gap with BaRP, a Bandit-feedback Routing with Preferences approach that trains under the same partial-feedback restriction as deployment, while supporting preference-tunable inference: operators can dial the performance/cost trade-off at test time without retraining. Framed as a contextual bandit over prompt features and a user preference vector, our method simulates an online feedback setting during training and adapts its routing decisions to each new prompt, rather than depending on full-information offline supervision. Comprehensive experiments show that our method consistently outperforms strong offline routers by at least 12.46% and the largest LLM by at least 2.45%, and generalizes robustly for unseen tasks.
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
Towards the aim of generalized robotic manipulation, spatial generalization is the most fundamental capability that requires the policy to work robustly under different spatial distribution of objects, environment and agent itself. To achieve this, substantial human demonstrations need to be collected to cover different spatial configurations for training a generalized visuomotor policy via imitation learning. Prior works explore a promising direction that leverages data generation to acquire abundant spatially diverse data from minimal source demonstrations. However, most approaches face significant sim-to-real gap and are often limited to constrained settings, such as fixed-base scenarios and predefined camera viewpoints. In this paper, we propose a real-to-real 3D data generation framework (R2RGen) that directly augments the pointcloud observation-action pairs to generate real-world data. R2RGen is simulator- and rendering-free, thus being efficient and plug-and-play. Specifically, given a single source demonstration, we introduce an annotation mechanism for fine-grained parsing of scene and trajectory. A group-wise augmentation strategy is proposed to handle complex multi-object compositions and diverse task constraints. We further present camera-aware processing to align the distribution of generated data with real-world 3D sensor. Empirically, R2RGen substantially enhances data efficiency on extensive experiments and demonstrates strong potential for scaling and application on mobile manipulation.
Despite their remarkable natural language understanding capabilities, Large Language Models (LLMs) have been underutilized for retrieval tasks. We present Search-R3, a novel framework that addresses this limitation by adapting LLMs to generate search embeddings as a direct output of their reasoning process. Our approach exploits LLMs' chain-of-thought capabilities, allowing them to produce more effective embeddings by reasoning step-by-step through complex semantic analyses. We implement this through three complementary mechanisms. (1) a supervised learning stage enables the model's ability to produce quality embeddings, (2) a reinforcement learning (RL) methodology that optimizes embedding generation alongside reasoning, and (3) a specialized RL environment that efficiently handles evolving embedding representations without requiring complete corpus re-encoding at each training iteration. Our extensive evaluations on diverse benchmarks demonstrate that Search-R3 significantly outperforms prior methods by unifying the reasoning and embedding generation processes. This integrated post-training approach represents a substantial advancement in handling complex knowledge-intensive tasks that require both sophisticated reasoning and effective information retrieval. Project page: https://github.com/ytgui/Search-R3
Recent advances in generative models have sparked exciting new possibilities in the field of autonomous vehicles. Specifically, video generation models are now being explored as controllable virtual testing environments. Simultaneously, end-to-end (E2E) driving models have emerged as a streamlined alternative to conventional modular autonomous driving systems, gaining popularity for their simplicity and scalability. However, the application of these techniques to simulation and planning raises important questions. First, while video generation models can generate increasingly realistic videos, can these videos faithfully adhere to the specified conditions and be realistic enough for E2E autonomous planner evaluation? Second, given that data is crucial for understanding and controlling E2E planners, how can we gain deeper insights into their biases and improve their ability to generalize to out-of-distribution scenarios? In this work, we bridge the gap between the driving models and generative world models (Drive&Gen) to address these questions. We propose novel statistical measures leveraging E2E drivers to evaluate the realism of generated videos. By exploiting the controllability of the video generation model, we conduct targeted experiments to investigate distribution gaps affecting E2E planner performance. Finally, we show that synthetic data produced by the video generation model offers a cost-effective alternative to real-world data collection. This synthetic data effectively improves E2E model generalization beyond existing Operational Design Domains, facilitating the expansion of autonomous vehicle services into new operational contexts.
As new optimizers gain traction and model quantization becomes standard for efficient deployment, a key question arises: how does the choice of optimizer affect model performance in the presence of quantization? Despite progress in both areas, systematic evidence on optimizer-quantization interactions remains limited. To fill this gap, we study the impact of optimizer choice on model robustness under quantization, considering both post-training quantization (PTQ), and quantization-aware training (QAT). We first train full-precision models, ranging from 50M to 1.5B parameters, with six optimizers, to explore the hyperparameter landscape, and establish well-tuned baselines. We then apply PTQ to evaluate how model performance degrades when trained with different optimizers. We find that outlier-related metrics, such as the max-to-mean ratio (MMR) and Kurtosis, fail to predict the PTQ performance across different optimizers. We show analytically that this is due to the MMR capturing only isolated layer errors, while ignoring how quantization errors accumulate and propagate through the network. To study the QAT degradation, we train quantized models from scratch and compare them to our original-precision baselines. We find that optimizers performing well in the original pretraining setup may not remain optimal under QAT, and that models trained with Shampoo show the lowest accuracy degradation. Finally, we derive scaling laws for quantization-aware training under different optimizers, showing that Shampoo achieves the highest parameter efficiency of all tested optimizers.
We present Stable Video Materials 3D (SViM3D), a framework to predict multi-view consistent physically based rendering (PBR) materials, given a single image. Recently, video diffusion models have been successfully used to reconstruct 3D objects from a single image efficiently. However, reflectance is still represented by simple material models or needs to be estimated in additional steps to enable relighting and controlled appearance edits. We extend a latent video diffusion model to output spatially varying PBR parameters and surface normals jointly with each generated view based on explicit camera control. This unique setup allows for relighting and generating a 3D asset using our model as neural prior. We introduce various mechanisms to this pipeline that improve quality in this ill-posed setting. We show state-of-the-art relighting and novel view synthesis performance on multiple object-centric datasets. Our method generalizes to diverse inputs, enabling the generation of relightable 3D assets useful in AR/VR, movies, games and other visual media.
Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to viable fusion power is understanding plasma turbulence, which significantly impairs plasma confinement, and is vital for next-generation reactor design. Plasma turbulence is governed by the nonlinear gyrokinetic equation, which evolves a 5D distribution function over time. Due to its high computational cost, reduced-order models are often employed in practice to approximate turbulent transport of energy. However, they omit nonlinear effects unique to the full 5D dynamics. To tackle this, we introduce GyroSwin, the first scalable 5D neural surrogate that can model 5D nonlinear gyrokinetic simulations, thereby capturing the physical phenomena neglected by reduced models, while providing accurate estimates of turbulent heat transport.GyroSwin (i) extends hierarchical Vision Transformers to 5D, (ii) introduces cross-attention and integration modules for latent 3Dleftrightarrow5D interactions between electrostatic potential fields and the distribution function, and (iii) performs channelwise mode separation inspired by nonlinear physics. We demonstrate that GyroSwin outperforms widely used reduced numerics on heat flux prediction, captures the turbulent energy cascade, and reduces the cost of fully resolved nonlinear gyrokinetics by three orders of magnitude while remaining physically verifiable. GyroSwin shows promising scaling laws, tested up to one billion parameters, paving the way for scalable neural surrogates for gyrokinetic simulations of plasma turbulence.
3D editing - the task of locally modifying the geometry or appearance of a 3D asset - has wide applications in immersive content creation, digital entertainment, and AR/VR. However, unlike 2D editing, it remains challenging due to the need for cross-view consistency, structural fidelity, and fine-grained controllability. Existing approaches are often slow, prone to geometric distortions, or dependent on manual and accurate 3D masks that are error-prone and impractical. To address these challenges, we advance both the data and model fronts. On the data side, we introduce 3DEditVerse, the largest paired 3D editing benchmark to date, comprising 116,309 high-quality training pairs and 1,500 curated test pairs. Built through complementary pipelines of pose-driven geometric edits and foundation model-guided appearance edits, 3DEditVerse ensures edit locality, multi-view consistency, and semantic alignment. On the model side, we propose 3DEditFormer, a 3D-structure-preserving conditional transformer. By enhancing image-to-3D generation with dual-guidance attention and time-adaptive gating, 3DEditFormer disentangles editable regions from preserved structure, enabling precise and consistent edits without requiring auxiliary 3D masks. Extensive experiments demonstrate that our framework outperforms state-of-the-art baselines both quantitatively and qualitatively, establishing a new standard for practical and scalable 3D editing. Dataset and code will be released. Project: https://www.lv-lab.org/3DEditFormer/
The use of target networks is a popular approach for estimating value functions in deep Reinforcement Learning (RL). While effective, the target network remains a compromise solution that preserves stability at the cost of slowly moving targets, thus delaying learning. Conversely, using the online network as a bootstrapped target is intuitively appealing, albeit well-known to lead to unstable learning. In this work, we aim to obtain the best out of both worlds by introducing a novel update rule that computes the target using the MINimum estimate between the Target and Online network, giving rise to our method, MINTO. Through this simple, yet effective modification, we show that MINTO enables faster and stable value function learning, by mitigating the potential overestimation bias of using the online network for bootstrapping. Notably, MINTO can be seamlessly integrated into a wide range of value-based and actor-critic algorithms with a negligible cost. We evaluate MINTO extensively across diverse benchmarks, spanning online and offline RL, as well as discrete and continuous action spaces. Across all benchmarks, MINTO consistently improves performance, demonstrating its broad applicability and effectiveness.
Generalist robot policies trained on large-scale, visually homogeneous datasets can be susceptible to shortcut learning, which impairs their out-of-distribution (OOD) generalization. While generative data augmentation is a common approach to introduce diversity, it presents a subtle challenge: data composition. Naively mixing real and synthetic data can corrupt the learning signal, as this process often prioritizes visual diversity at the expense of information fidelity. This paper suggests that robust generalization depends on principled, fidelity-aware data composition. We introduce Coherent Information Fidelity Tuning (CIFT), a framework that treats data composition as an optimization problem. CIFT uses a practical proxy for Information Fidelity based on the feature-space geometry of a dataset. This enables the identification of a phase transition, termed the Decoherence Point, where training stability degrades. The framework includes a generative engine, Multi-View Video Augmentation (MVAug), to synthesize a causally disentangled data spectrum for this tuning process. Applying CIFT to policy architectures such as pi_0 and Diffusion Policy improves OOD success rates by over 54\%. These results indicate that fidelity-aware composition, beyond data synthesis alone, is an important component for developing robust, general-purpose robots.