Schritt 3.5 Flash: Eröffnung von Grenzbereich-Intelligenz mit 11 Milliarden aktiven Parametern
Step 3.5 Flash: Open Frontier-Level Intelligence with 11B Active Parameters
February 11, 2026
papers.authors: Ailin Huang, Ang Li, Aobo Kong, Bin Wang, Binxing Jiao, Bo Dong, Bojun Wang, Boyu Chen, Brian Li, Buyun Ma, Chang Su, Changxin Miao, Changyi Wan, Chao Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengting Feng, Chengyuan Yao, Chunrui Han, Dan Ma, Dapeng Shi, Daxin Jiang, Dehua Ma, Deshan Sun, Di Qi, Enle Liu, Fajie Zhang, Fanqi Wan, Guanzhe Huang, Gulin Yan, Guoliang Cao, Guopeng Li, Han Cheng, Hangyu Guo, Hanshan Zhang, Hao Nie, Haonan Jia, Haoran Lv, Hebin Zhou, Hekun Lv, Heng Wang, Heung-Yeung Shum, Hongbo Huang, Hongbo Peng, Hongyu Zhou, Hongyuan Wang, Houyong Chen, Huangxi Zhu, Huimin Wu, Huiyong Guo, Jia Wang, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiashu Lv, Jiashuo Liu, Jiayi Fu, Jiayu Liu, Jie Cheng, Jie Luo, Jie Yang, Jie Zhou, Jieyi Hou, Jing Bai, Jingcheng Hu, Jingjing Xie, Jingwei Wu, Jingyang Zhang, Jishi Zhou, Junfeng Liu, Junzhe Lin, Ka Man Lo, Kai Liang, Kaibo Liu, Kaijun Tan, Kaiwen Yan, Kaixiang Li, Kang An, Kangheng Lin, Lei Yang, Liang Lv, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lina Chen, Luck Ma, Mengqiang Ren, Michael Li, Ming Li, Mingliang Li, Mingming Zhang, Mingrui Chen, Mitt Huang, Na Wang, Peng Liu, Qi Han, Qian Zhao, Qinglin He, Qinxin Du, Qiuping Wu, Quan Sun, Rongqiu Yang, Ruihang Miao, Ruixin Han, Ruosi Wan, Ruyan Guo, Shan Wang, Shaoliang Pang, Shaowen Yang, Shengjie Fan, Shijie Shang, Shiliang Yang, Shiwei Li, Shuangshuang Tian, Siqi Liu, Siye Wu, Siyu Chen, Song Yuan, Tiancheng Cao, Tianchi Yue, Tianhao Cheng, Tianning Li, Tingdan Luo, Wang You, Wei Ji, Wei Yuan, Wei Zhang, Weibo Wu, Weihao Xie, Wen Sun, Wenjin Deng, Wenzhen Zheng, Wuxun Xie, Xiangfeng Wang, Xiangwen Kong, Xiangyu Liu, Xiangyu Zhang, Xiaobo Yang, Xiaojia Liu, Xiaolan Yuan, Xiaoran Jiao, Xiaoxiao Ren, Xiaoyun Zhang, Xin Li, Xin Liu, Xin Wu, Xing Chen, Xingping Yang, Xinran Wang, Xu Zhao, Xuan He, Xuanti Feng, Xuedan Cai, Xuqiang Zhou, Yanbo Yu, Yang Li, Yang Xu, Yanlin Lai, Yanming Xu, Yaoyu Wang, Yeqing Shen, Yibo Zhu, Yichen Lv, Yicheng Cao, Yifeng Gong, Yijing Yang, Yikun Yang, Yin Zhao, Yingxiu Zhao, Yinmin Zhang, Yitong Zhang, Yixuan Zhang, Yiyang Chen, Yongchi Zhao, Yongshen Long, Yongyao Wang, Yousong Guan, Yu Zhou, Yuang Peng, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yudi Zhao, Yue Peng, Yueqiang Lin, Yufan Lu, Yuling Zhao, Yunzhou Ju, Yurong Zhang, Yusheng Li, Yuxiang Yang, Yuyang Chen, Yuzhu Cai, Zejia Weng, Zetao Hong, Zexi Li, Zhe Xie, Zheng Ge, Zheng Gong, Zheng Zeng, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhiheng Hu, Zidong Yang, Zili Wang, Ziqi Ren, Zixin Zhang, Zixuan Wang
cs.AI
papers.abstract
Wir stellen Step 3.5 Flash vor, ein sparsames Mixture-of-Experts (MoE)-Modell, das agentenbasierte Spitzenintelligenz mit Recheneffizienz verbindet. Unser Fokus liegt auf dem, was beim Aufbau von Agenten am wichtigsten ist: präzises logisches Denken sowie schnelle und zuverlässige Ausführung. Step 3.5 Flash kombiniert eine 196B-Parameter-Basis mit 11B aktiven Parametern für effiziente Inferenz. Es wurde durch verschachtelte 3:1 Sliding-Window/Full-Attention und Multi-Token-Prediction (MTP-3) optimiert, um die Latenz und Kosten mehrstufiger Agenteninteraktionen zu reduzieren. Um Spitzenintelligenz zu erreichen, haben wir ein skalierbares Reinforcement-Learning-Framework entwickelt, das verifizierbare Signale mit Präferenzfeedback kombiniert und dabei auch bei groß angelegtem Off-Policy-Training stabil bleibt, wodurch eine konsistente Selbstverbesserung in Mathematik, Code und Werkzeugnutzung ermöglicht wird. Step 3.5 Flash zeigt starke Leistungen in Agenten-, Programmier- und Mathematikaufgaben und erzielt 85,4 % auf IMO-AnswerBench, 86,4 % auf LiveCodeBench-v6 (2024.08-2025.05), 88,2 % auf tau2-Bench, 69,0 % auf BrowseComp (mit Kontextmanagement) und 51,0 % auf Terminal-Bench 2.0 – vergleichbar mit Spitzenmodellen wie GPT-5.2 xHigh und Gemini 3.0 Pro. Durch die Neudefinition der Effizienzgrenze bietet Step 3.5 Flash eine hochverdichtete Grundlage für den Einsatz anspruchsvoller Agenten in realen industriellen Umgebungen.
English
We introduce Step 3.5 Flash, a sparse Mixture-of-Experts (MoE) model that bridges frontier-level agentic intelligence and computational efficiency. We focus on what matters most when building agents: sharp reasoning and fast, reliable execution. Step 3.5 Flash pairs a 196B-parameter foundation with 11B active parameters for efficient inference. It is optimized with interleaved 3:1 sliding-window/full attention and Multi-Token Prediction (MTP-3) to reduce the latency and cost of multi-round agentic interactions. To reach frontier-level intelligence, we design a scalable reinforcement learning framework that combines verifiable signals with preference feedback, while remaining stable under large-scale off-policy training, enabling consistent self-improvement across mathematics, code, and tool use. Step 3.5 Flash demonstrates strong performance across agent, coding, and math tasks, achieving 85.4% on IMO-AnswerBench, 86.4% on LiveCodeBench-v6 (2024.08-2025.05), 88.2% on tau2-Bench, 69.0% on BrowseComp (with context management), and 51.0% on Terminal-Bench 2.0, comparable to frontier models such as GPT-5.2 xHigh and Gemini 3.0 Pro. By redefining the efficiency frontier, Step 3.5 Flash provides a high-density foundation for deploying sophisticated agents in real-world industrial environments.