ChatPaper.aiChatPaper

ステップ3.5 フラッシュ:110億アクティブパラメータで実現するフロンティアレベルの知能

Step 3.5 Flash: Open Frontier-Level Intelligence with 11B Active Parameters

February 11, 2026
著者: Ailin Huang, Ang Li, Aobo Kong, Bin Wang, Binxing Jiao, Bo Dong, Bojun Wang, Boyu Chen, Brian Li, Buyun Ma, Chang Su, Changxin Miao, Changyi Wan, Chao Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengting Feng, Chengyuan Yao, Chunrui Han, Dan Ma, Dapeng Shi, Daxin Jiang, Dehua Ma, Deshan Sun, Di Qi, Enle Liu, Fajie Zhang, Fanqi Wan, Guanzhe Huang, Gulin Yan, Guoliang Cao, Guopeng Li, Han Cheng, Hangyu Guo, Hanshan Zhang, Hao Nie, Haonan Jia, Haoran Lv, Hebin Zhou, Hekun Lv, Heng Wang, Heung-Yeung Shum, Hongbo Huang, Hongbo Peng, Hongyu Zhou, Hongyuan Wang, Houyong Chen, Huangxi Zhu, Huimin Wu, Huiyong Guo, Jia Wang, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiashu Lv, Jiashuo Liu, Jiayi Fu, Jiayu Liu, Jie Cheng, Jie Luo, Jie Yang, Jie Zhou, Jieyi Hou, Jing Bai, Jingcheng Hu, Jingjing Xie, Jingwei Wu, Jingyang Zhang, Jishi Zhou, Junfeng Liu, Junzhe Lin, Ka Man Lo, Kai Liang, Kaibo Liu, Kaijun Tan, Kaiwen Yan, Kaixiang Li, Kang An, Kangheng Lin, Lei Yang, Liang Lv, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lina Chen, Luck Ma, Mengqiang Ren, Michael Li, Ming Li, Mingliang Li, Mingming Zhang, Mingrui Chen, Mitt Huang, Na Wang, Peng Liu, Qi Han, Qian Zhao, Qinglin He, Qinxin Du, Qiuping Wu, Quan Sun, Rongqiu Yang, Ruihang Miao, Ruixin Han, Ruosi Wan, Ruyan Guo, Shan Wang, Shaoliang Pang, Shaowen Yang, Shengjie Fan, Shijie Shang, Shiliang Yang, Shiwei Li, Shuangshuang Tian, Siqi Liu, Siye Wu, Siyu Chen, Song Yuan, Tiancheng Cao, Tianchi Yue, Tianhao Cheng, Tianning Li, Tingdan Luo, Wang You, Wei Ji, Wei Yuan, Wei Zhang, Weibo Wu, Weihao Xie, Wen Sun, Wenjin Deng, Wenzhen Zheng, Wuxun Xie, Xiangfeng Wang, Xiangwen Kong, Xiangyu Liu, Xiangyu Zhang, Xiaobo Yang, Xiaojia Liu, Xiaolan Yuan, Xiaoran Jiao, Xiaoxiao Ren, Xiaoyun Zhang, Xin Li, Xin Liu, Xin Wu, Xing Chen, Xingping Yang, Xinran Wang, Xu Zhao, Xuan He, Xuanti Feng, Xuedan Cai, Xuqiang Zhou, Yanbo Yu, Yang Li, Yang Xu, Yanlin Lai, Yanming Xu, Yaoyu Wang, Yeqing Shen, Yibo Zhu, Yichen Lv, Yicheng Cao, Yifeng Gong, Yijing Yang, Yikun Yang, Yin Zhao, Yingxiu Zhao, Yinmin Zhang, Yitong Zhang, Yixuan Zhang, Yiyang Chen, Yongchi Zhao, Yongshen Long, Yongyao Wang, Yousong Guan, Yu Zhou, Yuang Peng, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yudi Zhao, Yue Peng, Yueqiang Lin, Yufan Lu, Yuling Zhao, Yunzhou Ju, Yurong Zhang, Yusheng Li, Yuxiang Yang, Yuyang Chen, Yuzhu Cai, Zejia Weng, Zetao Hong, Zexi Li, Zhe Xie, Zheng Ge, Zheng Gong, Zheng Zeng, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhiheng Hu, Zidong Yang, Zili Wang, Ziqi Ren, Zixin Zhang, Zixuan Wang
cs.AI

要旨

我々は、フロンティアレベルのエージェント知能と計算効率を両立するスパース混合専門家(MoE)モデル「Step 3.5 Flash」を提案する。本モデルは、エージェント構築において最も重要な要素である鋭い推論能力と高速かつ信頼性の高い実行に焦点を当てている。Step 3.5 Flashは、1960億パラメータの基盤モデルと推論時に活性化される110億パラメータを組み合わせることで効率的な推論を実現。マルチラウンドのエージェント相互作用における遅延とコストを削減するため、3:1のスライディングウィンドウ/フルアテンションの交互配置とマルチトークン予測(MTP-3)を最適化している。 フロンティアレベルの知能を達成するため、検証可能な信号と選好フィードバックを組み合わせたスケーラブルな強化学習フレームワークを設計。大規模オフポリシー学習下でも安定性を保ちながら、数学・コード・ツール使用における一貫した自己改善を可能にしている。Step 3.5 Flashはエージェントタスク・コーディング・数学タスクで強力な性能を発揮し、IMO-AnswerBenchで85.4%、LiveCodeBench-v6(2024.08-2025.05)で86.4%、tau2-Benchで88.2%、BrowseComp(コンテキスト管理付き)で69.0%、Terminal-Bench 2.0で51.0%を達成。GPT-5.2 xHighやGemini 3.0 Proなどのフロンティアモデルに匹敵する性能を示す。 効率フロンティアを再定義するStep 3.5 Flashは、現実の産業環境において高度なエージェントを展開するための高密度な基盤を提供する。
English
We introduce Step 3.5 Flash, a sparse Mixture-of-Experts (MoE) model that bridges frontier-level agentic intelligence and computational efficiency. We focus on what matters most when building agents: sharp reasoning and fast, reliable execution. Step 3.5 Flash pairs a 196B-parameter foundation with 11B active parameters for efficient inference. It is optimized with interleaved 3:1 sliding-window/full attention and Multi-Token Prediction (MTP-3) to reduce the latency and cost of multi-round agentic interactions. To reach frontier-level intelligence, we design a scalable reinforcement learning framework that combines verifiable signals with preference feedback, while remaining stable under large-scale off-policy training, enabling consistent self-improvement across mathematics, code, and tool use. Step 3.5 Flash demonstrates strong performance across agent, coding, and math tasks, achieving 85.4% on IMO-AnswerBench, 86.4% on LiveCodeBench-v6 (2024.08-2025.05), 88.2% on tau2-Bench, 69.0% on BrowseComp (with context management), and 51.0% on Terminal-Bench 2.0, comparable to frontier models such as GPT-5.2 xHigh and Gemini 3.0 Pro. By redefining the efficiency frontier, Step 3.5 Flash provides a high-density foundation for deploying sophisticated agents in real-world industrial environments.
PDF1503February 13, 2026