ChatPaper.aiChatPaper

Réflexions du Hackathon 2024 sur les Grands Modèles de Langage (GML) pour les Applications en Science des Matériaux et en Chimie

Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

November 20, 2024
Auteurs: Yoel Zimmermann, Adib Bazgir, Zartashia Afzal, Fariha Agbere, Qianxiang Ai, Nawaf Alampara, Alexander Al-Feghali, Mehrad Ansari, Dmytro Antypov, Amro Aswad, Jiaru Bai, Viktoriia Baibakova, Devi Dutta Biswajeet, Erik Bitzek, Joshua D. Bocarsly, Anna Borisova, Andres M Bran, L. Catherine Brinson, Marcel Moran Calderon, Alessandro Canalicchio, Victor Chen, Yuan Chiang, Defne Circi, Benjamin Charmes, Vikrant Chaudhary, Zizhang Chen, Min-Hsueh Chiu, Judith Clymo, Kedar Dabhadkar, Nathan Daelman, Archit Datar, Matthew L. Evans, Maryam Ghazizade Fard, Giuseppe Fisicaro, Abhijeet Sadashiv Gangan, Janine George, Jose D. Cojal Gonzalez, Michael Götte, Ankur K. Gupta, Hassan Harb, Pengyu Hong, Abdelrahman Ibrahim, Ahmed Ilyas, Alishba Imran, Kevin Ishimwe, Ramsey Issa, Kevin Maik Jablonka, Colin Jones, Tyler R. Josephson, Greg Juhasz, Sarthak Kapoor, Rongda Kang, Ghazal Khalighinejad, Sartaaj Khan, Sascha Klawohn, Suneel Kuman, Alvin Noe Ladines, Sarom Leang, Magdalena Lederbauer, Sheng-Lun Mark Liao, Hao Liu, Xuefeng Liu, Stanley Lo, Sandeep Madireddy, Piyush Ranjan Maharana, Shagun Maheshwari, Soroush Mahjoubi, José A. Márquez, Rob Mills, Trupti Mohanty, Bernadette Mohr, Seyed Mohamad Moosavi, Alexander Moßhammer, Amirhossein D. Naghdi, Aakash Naik, Oleksandr Narykov, Hampus Näsström, Xuan Vu Nguyen, Xinyi Ni, Dana O'Connor, Teslim Olayiwola, Federico Ottomano, Aleyna Beste Ozhan, Sebastian Pagel, Chiku Parida, Jaehee Park, Vraj Patel, Elena Patyukova, Martin Hoffmann Petersen, Luis Pinto, José M. Pizarro, Dieter Plessers, Tapashree Pradhan, Utkarsh Pratiush, Charishma Puli, Andrew Qin, Mahyar Rajabi, Francesco Ricci, Elliot Risch, Martiño Ríos-García, Aritra Roy, Tehseen Rug, Hasan M Sayeed, Markus Scheidgen, Mara Schilling-Wilhelmi, Marcel Schloz, Fabian Schöppach, Julia Schumann, Philippe Schwaller, Marcus Schwarting, Samiha Sharlin, Kevin Shen, Jiale Shi, Pradip Si, Jennifer D'Souza, Taylor Sparks, Suraj Sudhakar, Leopold Talirz, Dandan Tang, Olga Taran, Carla Terboven, Mark Tropin, Anastasiia Tsymbal, Katharina Ueltzen, Pablo Andres Unzueta, Archit Vasan, Tirtha Vinchurkar, Trung Vo, Gabriel Vogel, Christoph Völker, Jan Weinreich, Faradawn Yang, Mohd Zaki, Chi Zhang, Sylvester Zhang, Weijie Zhang, Ruijie Zhu, Shang Zhu, Jan Janssen, Ian Foster, Ben Blaiszik
cs.AI

Résumé

Nous présentons ici les résultats du deuxième Hackathon de Modèles de Langage Géants (LLM) pour les Applications en Science des Matériaux et en Chimie, qui a impliqué des participants de divers endroits hybrides à l'échelle mondiale, aboutissant à 34 soumissions d'équipes. Les soumissions couvraient sept domaines d'application clés et ont démontré l'utilité variée des LLM pour les applications en (1) prédiction de propriétés moléculaires et matérielles ; (2) conception moléculaire et matérielle ; (3) automatisation et nouvelles interfaces ; (4) communication scientifique et éducation ; (5) gestion des données de recherche et automatisation ; (6) génération et évaluation d'hypothèses ; et (7) extraction de connaissances et raisonnement à partir de la littérature scientifique. Chaque soumission d'équipe est présentée dans un tableau récapitulatif avec des liens vers le code et de brefs articles en annexe. En plus des résultats des équipes, nous discutons de l'événement du hackathon et de son format hybride, qui comprenait des centres physiques à Toronto, Montréal, San Francisco, Berlin, Lausanne et Tokyo, ainsi qu'un centre en ligne mondial pour permettre la collaboration locale et virtuelle. Dans l'ensemble, l'événement a mis en lumière des améliorations significatives des capacités des LLM depuis le hackathon de l'année précédente, suggérant une expansion continue des LLM pour les applications en recherche en science des matériaux et en chimie. Ces résultats démontrent l'utilité double des LLM en tant que modèles polyvalents pour diverses tâches d'apprentissage automatique et plates-formes pour le prototypage rapide d'applications personnalisées en recherche scientifique.
English
Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.

Summary

AI-Generated Summary

PDF332November 26, 2024