ChatPaper.aiChatPaper

MinerU2.5: Un modello visione-linguaggio disaccoppiato per un'analisi efficiente di documenti ad alta risoluzione

MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing

September 26, 2025
Autori: Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, Zhenjiang Jin, Guang Liang, Rui Zhang, Wenzheng Zhang, Yuan Qu, Zhifei Ren, Yuefeng Sun, Yuanhong Zheng, Dongsheng Ma, Zirui Tang, Boyu Niu, Ziyang Miao, Hejun Dong, Siyi Qian, Junyuan Zhang, Jingzhou Chen, Fangdong Wang, Xiaomeng Zhao, Liqun Wei, Wei Li, Shasha Wang, Ruiliang Xu, Yuanyuan Cao, Lu Chen, Qianqian Wu, Huaiyu Gu, Lindong Lu, Keming Wang, Dechen Lin, Guanlin Shen, Xuanhe Zhou, Linfeng Zhang, Yuhang Zang, Xiaoyi Dong, Jiaqi Wang, Bo Zhang, Lei Bai, Pei Chu, Weijia Li, Jiang Wu, Lijun Wu, Zhenxiang Li, Guangyu Wang, Zhongying Tu, Chao Xu, Kai Chen, Yu Qiao, Bowen Zhou, Dahua Lin, Wentao Zhang, Conghui He
cs.AI

Abstract

Presentiamo MinerU2.5, un modello visione-linguaggio da 1,2 miliardi di parametri per l'analisi di documenti che raggiunge un'accuratezza di riconoscimento all'avanguardia mantenendo un'eccezionale efficienza computazionale. Il nostro approccio utilizza una strategia di analisi a due stadi, dal generale al dettagliato, che separa l'analisi del layout globale dal riconoscimento del contenuto locale. Nella prima fase, il modello esegue un'analisi efficiente del layout su immagini sottocampionate per identificare gli elementi strutturali, evitando il sovraccarico computazionale derivante dall'elaborazione di input ad alta risoluzione. Nella seconda fase, guidato dal layout globale, esegue il riconoscimento mirato del contenuto su ritagli a risoluzione nativa estratti dall'immagine originale, preservando i dettagli fini in testi densi, formule complesse e tabelle. Per supportare questa strategia, abbiamo sviluppato un motore di dati completo che genera corpora di addestramento diversificati e su larga scala sia per il pre-addestramento che per l'affinamento. In definitiva, MinerU2.5 dimostra una forte capacità di analisi documentale, raggiungendo prestazioni all'avanguardia su molteplici benchmark, superando sia modelli generici che specifici per dominio in vari compiti di riconoscimento, pur mantenendo un sovraccarico computazionale significativamente inferiore.
English
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.
PDF1212September 29, 2025