ChatPaper.aiChatPaper

仮想幅ネットワーク

Virtual Width Networks

November 14, 2025
著者: Seed, Baisheng Li, Banggu Wu, Bole Ma, Bowen Xiao, Chaoyi Zhang, Cheng Li, Chengyi Wang, Chenyin Xu, Chi Zhang, Chong Hu, Daoguang Zan, Defa Zhu, Dongyu Xu, Du Li, Faming Wu, Fan Xia, Ge Zhang, Guang Shi, Haobin Chen, Hongyu Zhu, Hongzhi Huang, Huan Zhou, Huanzhang Dou, Jianhui Duan, Jianqiao Lu, Jianyu Jiang, Jiayi Xu, Jiecao Chen, Jin Chen, Jin Ma, Jing Su, Jingji Chen, Jun Wang, Jun Yuan, Juncai Liu, Jundong Zhou, Kai Hua, Kai Shen, Kai Xiang, Kaiyuan Chen, Kang Liu, Ke Shen, Liang Xiang, Lin Yan, Lishu Luo, Mengyao Zhang, Ming Ding, Mofan Zhang, Nianning Liang, Peng Li, Penghao Huang, Pengpeng Mu, Qi Huang, Qianli Ma, Qiyang Min, Qiying Yu, Renming Pang, Ru Zhang, Shen Yan, Shen Yan, Shixiong Zhao, Shuaishuai Cao, Shuang Wu, Siyan Chen, Siyu Li, Siyuan Qiao, Tao Sun, Tian Xin, Tiantian Fan, Ting Huang, Ting-Han Fan, Wei Jia, Wenqiang Zhang, Wenxuan Liu, Xiangzhong Wu, Xiaochen Zuo, Xiaoying Jia, Ximing Yang, Xin Liu, Xin Yu, Xingyan Bin, Xintong Hao, Xiongcai Luo, Xujing Li, Xun Zhou, Yanghua Peng, Yangrui Chen, Yi Lin, Yichong Leng, Yinghao Li, Yingshuan Song, Yiyuan Ma, Yong Shan, Yongan Xiang, Yonghui Wu, Yongtao Zhang, Yongzhen Yao, Yu Bao, Yuehang Yang, Yufeng Yuan, Yunshui Li, Yuqiao Xian, Yutao Zeng, Yuxuan Wang, Zehua Hong, Zehua Wang, Zengzhi Wang, Zeyu Yang, Zhengqiang Yin, Zhenyi Lu, Zhexi Zhang, Zhi Chen, Zhi Zhang, Zhiqi Lin, Zihao Huang, Zilin Xu, Ziyun Wei, Zuo Wang
cs.AI

要旨

我々はVirtual Width Networks(VWN)を提案する。このフレームワークは、隠れ層サイズの増大に伴う二次コストを発生させることなく、より広い表現の利点を実現する。VWNは表現幅とバックボーン幅を分離し、埋め込み空間を拡張しながらバックボーンの計算量をほぼ一定に保つ。大規模実験では、8倍の拡張により、次トークン予測では2倍以上、次々トークン予測では3倍以上の最適化加速が確認された。この利点は訓練の進行に伴い、損失差の拡大と収束速度向上率の増加という形で増幅され、VWNがトークン効率が良いだけでなく、スケールに応じて効果が持続的に高まることを示している。さらに、仮想幅と損失減少の間に近似的に対数線形のスケーリング関係が存在することを確認し、大規模モデル効率化の新たな次元として仮想幅スケーリングを探求する実証的基盤と動機を提供する。
English
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
PDF353December 1, 2025