ChatPaper.aiChatPaper

Redes de Ancho Virtual

Virtual Width Networks

November 14, 2025
Autores: Seed, Baisheng Li, Banggu Wu, Bole Ma, Bowen Xiao, Chaoyi Zhang, Cheng Li, Chengyi Wang, Chenyin Xu, Chi Zhang, Chong Hu, Daoguang Zan, Defa Zhu, Dongyu Xu, Du Li, Faming Wu, Fan Xia, Ge Zhang, Guang Shi, Haobin Chen, Hongyu Zhu, Hongzhi Huang, Huan Zhou, Huanzhang Dou, Jianhui Duan, Jianqiao Lu, Jianyu Jiang, Jiayi Xu, Jiecao Chen, Jin Chen, Jin Ma, Jing Su, Jingji Chen, Jun Wang, Jun Yuan, Juncai Liu, Jundong Zhou, Kai Hua, Kai Shen, Kai Xiang, Kaiyuan Chen, Kang Liu, Ke Shen, Liang Xiang, Lin Yan, Lishu Luo, Mengyao Zhang, Ming Ding, Mofan Zhang, Nianning Liang, Peng Li, Penghao Huang, Pengpeng Mu, Qi Huang, Qianli Ma, Qiyang Min, Qiying Yu, Renming Pang, Ru Zhang, Shen Yan, Shen Yan, Shixiong Zhao, Shuaishuai Cao, Shuang Wu, Siyan Chen, Siyu Li, Siyuan Qiao, Tao Sun, Tian Xin, Tiantian Fan, Ting Huang, Ting-Han Fan, Wei Jia, Wenqiang Zhang, Wenxuan Liu, Xiangzhong Wu, Xiaochen Zuo, Xiaoying Jia, Ximing Yang, Xin Liu, Xin Yu, Xingyan Bin, Xintong Hao, Xiongcai Luo, Xujing Li, Xun Zhou, Yanghua Peng, Yangrui Chen, Yi Lin, Yichong Leng, Yinghao Li, Yingshuan Song, Yiyuan Ma, Yong Shan, Yongan Xiang, Yonghui Wu, Yongtao Zhang, Yongzhen Yao, Yu Bao, Yuehang Yang, Yufeng Yuan, Yunshui Li, Yuqiao Xian, Yutao Zeng, Yuxuan Wang, Zehua Hong, Zehua Wang, Zengzhi Wang, Zeyu Yang, Zhengqiang Yin, Zhenyi Lu, Zhexi Zhang, Zhi Chen, Zhi Zhang, Zhiqi Lin, Zihao Huang, Zilin Xu, Ziyun Wei, Zuo Wang
cs.AI

Resumen

Introducimos Virtual Width Networks (VWN), un marco que ofrece los beneficios de representaciones más amplias sin incurrir en el coste cuadrático de aumentar el tamaño de la capa oculta. VWN desacopla el ancho representacional del ancho de la red troncal, expandiendo el espacio de *embeddings* mientras mantiene el cómputo de la red troncal casi constante. En nuestro experimento a gran escala, una expansión de 8 veces acelera la optimización en más de 2 veces para la predicción del siguiente token y en 3 veces para la predicción de los siguientes 2 tokens. La ventaja se amplía durante el entrenamiento a medida que crece tanto la brecha de la pérdida como la relación de aceleración de la convergencia, lo que demuestra que VWN no solo es eficiente en tokens, sino también cada vez más efectivo con la escala. Además, identificamos una relación de escalado aproximadamente log-lineal entre el ancho virtual y la reducción de la pérdida, ofreciendo una base empírica inicial y una motivación para explorar el escalado de ancho virtual como una nueva dimensión de la eficiencia en modelos grandes.
English
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
PDF353December 1, 2025