ChatPaper.aiChatPaper

Ministraal 3

Ministral 3

January 13, 2026
Auteurs: Alexander H. Liu, Kartik Khandelwal, Sandeep Subramanian, Victor Jouault, Abhinav Rastogi, Adrien Sadé, Alan Jeffares, Albert Jiang, Alexandre Cahill, Alexandre Gavaudan, Alexandre Sablayrolles, Amélie Héliou, Amos You, Andy Ehrenberg, Andy Lo, Anton Eliseev, Antonia Calvi, Avinash Sooriyarachchi, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Clémence Lanfranchi, Corentin Barreau, Cyprien Courtot, Daniele Grattarola, Darius Dabert, Diego de las Casas, Elliot Chane-Sane, Faruk Ahmed, Gabrielle Berrada, Gaëtan Ecrepont, Gauthier Guinet, Georgii Novikov, Guillaume Kunsch, Guillaume Lample, Guillaume Martin, Gunshi Gupta, Jan Ludziejewski, Jason Rute, Joachim Studnia, Jonas Amar, Joséphine Delas, Josselin Somerville Roberts, Karmesh Yadav, Khyathi Chandu, Kush Jain, Laurence Aitchison, Laurent Fainsin, Léonard Blier, Lingxiao Zhao, Louis Martin, Lucile Saulnier, Luyu Gao, Maarten Buyl, Margaret Jennings, Marie Pellat, Mark Prins, Mathieu Poirée, Mathilde Guillaumin, Matthieu Dinot, Matthieu Futeral, Maxime Darrin, Maximilian Augustin, Mia Chiquier, Michel Schimpf, Nathan Grinsztajn, Neha Gupta, Nikhil Raghuraman, Olivier Bousquet, Olivier Duchenne, Patricia Wang, Patrick von Platen, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Quentin Torroba, Romain Sauvestre, Roman Soletskyi, Rupert Menneer, Sagar Vaze, Samuel Barry, Sanchit Gandhi, Siddhant Waghjale, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Teven Le Scao, Théo Cachet, Theo Simon Sorg, Thibaut Lavril, Thiziri Nait Saada, Thomas Chabal, Thomas Foubert, Thomas Robert, Thomas Wang, Tim Lawson, Tom Bewley, Tom Bewley, Tom Edwards, Umar Jamil, Umberto Tomasini, Valeriia Nemychnikova, Van Phung, Vincent Maladière, Virgile Richard, Wassim Bouaziz, Wen-Ding Li, William Marshall, Xinghui Li, Xinyu Yang, Yassine El Ouahidi, Yihan Wang, Yunhao Tang, Zaccharie Ramzi
cs.AI

Samenvatting

Wij introduceren de Ministral 3-serie, een familie van parameter-efficiënte dense taalmodellen die zijn ontworpen voor toepassingen met beperkte reken- en geheugencapaciteit, beschikbaar in drie groottes: 3B, 8B en 14B parameters. Voor elke modelgrootte brengen we drie varianten uit: een vooraf getraind basismodel voor algemeen gebruik, een model dat is afgestemd op instructies, en een redeneermodel voor complexe probleemoplossing. Daarnaast presenteren we onze methode om de Ministral 3-modellen af te leiden via Cascade Distillation, een techniek van iteratief snoeien en voortgezette training met distillatie. Elk model beschikt over beeldbegripcapaciteiten, allemaal vrijgegeven onder de Apache 2.0-licentie.
English
We introduce the Ministral 3 series, a family of parameter-efficient dense language models designed for compute and memory constrained applications, available in three model sizes: 3B, 8B, and 14B parameters. For each model size, we release three variants: a pretrained base model for general-purpose use, an instruction finetuned, and a reasoning model for complex problem-solving. In addition, we present our recipe to derive the Ministral 3 models through Cascade Distillation, an iterative pruning and continued training with distillation technique. Each model comes with image understanding capabilities, all under the Apache 2.0 license.
PDF270January 15, 2026