HunyuanVideo 1.5 Technisch Rapport
HunyuanVideo 1.5 Technical Report
November 24, 2025
Auteurs: Bing Wu, Chang Zou, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Jack Peng, Jianbing Wu, Jiangfeng Xiong, Jie Jiang, Linus, Patrol, Peizhen Zhang, Peng Chen, Penghao Zhao, Qi Tian, Songtao Liu, Weijie Kong, Weiyan Wang, Xiao He, Xin Li, Xinchi Deng, Xuefei Zhe, Yang Li, Yanxin Long, Yuanbo Peng, Yue Wu, Yuhong Liu, Zhenyu Wang, Zuozhuo Dai, Bo Peng, Coopers Li, Gu Gong, Guojian Xiao, Jiahe Tian, Jiaxin Lin, Jie Liu, Jihong Zhang, Jiesong Lian, Kaihang Pan, Lei Wang, Lin Niu, Mingtao Chen, Mingyang Chen, Mingzhe Zheng, Miles Yang, Qiangqiang Hu, Qi Yang, Qiuyong Xiao, Runzhou Wu, Ryan Xu, Rui Yuan, Shanshan Sang, Shisheng Huang, Siruis Gong, Shuo Huang, Weiting Guo, Xiang Yuan, Xiaojia Chen, Xiawei Hu, Wenzhi Sun, Xiele Wu, Xianshun Ren, Xiaoyan Yuan, Xiaoyue Mi, Yepeng Zhang, Yifu Sun, Yiting Lu, Yitong Li, You Huang, Yu Tang, Yixuan Li, Yuhang Deng, Yuan Zhou, Zhichao Hu, Zhiguang Liu, Zhihe Yang, Zilin Yang, Zhenzhi Lu, Zixiang Zhou, Zhao Zhong
cs.AI
Samenvatting
Wij presenteren HunyuanVideo 1.5, een lichtgewicht maar krachtig open-source videogeneratiemodel dat met slechts 8,3 miljard parameters state-of-the-art visuele kwaliteit en bewegingscoherentie bereikt, waardoor efficiënte inferentie op consumenten-GPU's mogelijk is. Deze prestatie is gebouwd op verschillende cruciale componenten: zorgvuldige datacuratie, een geavanceerde DiT-architectuur met selectieve en glijdende tegelattention (SSTA), verbeterd tweetalig begrip via glyph-bewuste tekstcodering, progressieve voortraining en natraining, en een efficiënt netwerk voor videoresolutieverbetering. Door gebruik te maken van deze ontwerpen ontwikkelden we een uniform framework dat hoogwaardige tekst-naar-video- en beeld-naar-videogeneratie ondersteunt voor meerdere duur- en resolutieformaten.
Uitgebreide experimenten tonen aan dat dit compacte en vaardige model een nieuwe state-of-the-art vestigt onder open-source videogeneratiemodellen. Door de release van de code en modelgewichten bieden we de gemeenschap een hoogwaardige foundation die de drempel voor videoproductie en onderzoek verlaagt, waardoor geavanceerde videogeneratie toegankelijker wordt voor een breder publiek. Alle open-source bronnen zijn openbaar beschikbaar op https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.
English
We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions.Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.