ChatPaper.aiChatPaper.ai
Home

arXiv

HuggingFace

PricingAccountWorkSpace

•
•

•
•

•
•

•
•

•
•

Footer

Company name

ChatPaper.ai: Your advanced AI reading assistant.

Contact us: hi@pomodiary.com

X (Twitter)Discord

Products

  • AI Search
  • AI Mind Map
  • Arxiv Summary
  • Huggingface Summary

Support

  • FAQ
  • Contact

Company

  • Blog
  • Privacy Policy
  • Terms of Service

Available Languages

  • 🇬🇧English
  • 🇨🇳中文简体
  • 🇭🇰繁體中文
  • 🇯🇵日本語
  • 🇰🇷한국어
  • 🇩🇪Deutsch
  • 🇫🇷Français
  • 🇷🇺Русский
  • 🇪🇸Español

© 2025 chatpaper.ai All rights reserved.

AI Research Papers Daily

Daily curated AI research papers with translations

1

The Devil Behind Moltbook: Anthropic Safety is Always Vanishing in Self-Evolving AI Societies

Feb 10
ByChenxu Wang, Chaozhuo Li, Songyang Liu, Zejian Chen, Jinyu Hou, Ji Qi, Rui Li, Litian Zhang, Qiwei Ye, Zheng Liu, Xu Chen, Xi Zhang, Philip S. Yu
169
2

The emergence of multi-agent systems built from large language models (LLMs) offers a promising paradigm for scalable collective intelligence and self-evolution. Ideally, such systems would achieve continuous self-improvement in a fully closed loop while maintaining robust safety alignment--a combination we term the self-evolution trilemma. However, we demonstrate both theoretically and empirically that an agent society satisfying continuous self-evolution, complete isolation, and safety invariance is impossible. Drawing on an information-theoretic framework, we formalize safety as the divergence degree from anthropic value distributions. We theoretically demonstrate that isolated self-evolution induces statistical blind spots, leading to the irreversible degradation of the system's safety alignment. Empirical and qualitative results from an open-ended agent community (Moltbook) and two closed self-evolving systems reveal phenomena that align with our theoretical prediction of inevitable safety erosion. We further propose several solution directions to alleviate the identified safety concern. Our work establishes a fundamental limit on the self-evolving AI societies and shifts the discourse from symptom-driven safety patches to a principled understanding of intrinsic dynamical risks, highlighting the need for external oversight or novel safety-preserving mechanisms.

2

Composition-RL: Compose Your Verifiable Prompts for Reinforcement Learning of Large Language Models

Feb 12
ByXin Xu, Clive Bai, Kai Yang, Tianhao Chen, Yangkun Chen, Weijie Liu, Hao Chen, Yang Wang, Saiyong Yang, Can Yang
81
1

Large-scale verifiable prompts underpin the success of Reinforcement Learning with Verifiable Rewards (RLVR), but they contain many uninformative examples and are costly to expand further. Recent studies focus on better exploiting limited training data by prioritizing hard prompts whose rollout pass rate is 0. However, easy prompts with a pass rate of 1 also become increasingly prevalent as training progresses, thereby reducing the effective data size. To mitigate this, we propose Composition-RL, a simple yet useful approach for better utilizing limited verifiable prompts targeting pass-rate-1 prompts. More specifically, Composition-RL automatically composes multiple problems into a new verifiable question and uses these compositional prompts for RL training. Extensive experiments across model sizes from 4B to 30B show that Composition-RL consistently improves reasoning capability over RL trained on the original dataset. Performance can be further boosted with a curriculum variant of Composition-RL that gradually increases compositional depth over training. Additionally, Composition-RL enables more effective cross-domain RL by composing prompts drawn from different domains. Codes, datasets, and models are available at https://github.com/XinXU-USTC/Composition-RL.

3

DeepGen 1.0: A Lightweight Unified Multimodal Model for Advancing Image Generation and Editing

Feb 12
ByDianyi Wang, Ruihang Li, Feng Han, Chaofan Ma, Wei Song, Siyuan Wang, Yibin Wang, Yi Xin, Hongjian Liu, Zhixiong Zhang, Shengyuan Ding, Tianhang Wang, Zhenglin Cheng, Tao Lin, Cheng Jin, Kaicheng Yu, Jingjing Chen, Wenjie Wang, Zhongyu Wei, Jiaqi Wang
60
1

Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.

4

Learning beyond Teacher: Generalized On-Policy Distillation with Reward Extrapolation

Feb 12
ByWenkai Yang, Weijie Liu, Ruobing Xie, Kai Yang, Saiyong Yang, Yankai Lin
53
2

On-policy distillation (OPD), which aligns the student with the teacher's logit distribution on student-generated trajectories, has demonstrated strong empirical gains in improving student performance and often outperforms off-policy distillation and reinforcement learning (RL) paradigms. In this work, we first theoretically show that OPD is a special case of dense KL-constrained RL where the reward function and the KL regularization are always weighted equally and the reference model can by any model. Then, we propose the Generalized On-Policy Distillation (G-OPD) framework, which extends the standard OPD objective by introducing a flexible reference model and a reward scaling factor that controls the relative weight of the reward term against the KL regularization. Through comprehensive experiments on math reasoning and code generation tasks, we derive two novel insights: (1) Setting the reward scaling factor to be greater than 1 (i.e., reward extrapolation), which we term ExOPD, consistently improves over standard OPD across a range of teacher-student size pairings. In particular, in the setting where we merge the knowledge from different domain experts, obtained by applying domain-specific RL to the same student model, back into the original student, ExOPD enables the student to even surpass the teacher's performance boundary and outperform the domain teachers. (2) Building on ExOPD, we further find that in the strong-to-weak distillation setting (i.e., distilling a smaller student from a larger teacher), performing reward correction by choosing the reference model as the teacher's base model before RL yields a more accurate reward signal and further improves distillation performance. However, this choice assumes access to the teacher's pre-RL variant and incurs more computational overhead. We hope our work offers new insights for future research on OPD.

5

MOSS-Audio-Tokenizer: Scaling Audio Tokenizers for Future Audio Foundation Models

Feb 11
ByYitian Gong, Kuangwei Chen, Zhaoye Fei, Xiaogui Yang, Ke Chen, Yang Wang, Kexin Huang, Mingshu Chen, Ruixiao Li, Qingyuan Cheng, Shimin Li, Xipeng Qiu
43
3

Discrete audio tokenizers are fundamental to empowering large language models with native audio processing and generation capabilities. Despite recent progress, existing approaches often rely on pretrained encoders, semantic distillation, or heterogeneous CNN-based architectures. These designs introduce fixed inductive biases that limit reconstruction fidelity and hinder effective scaling. In this paper, we argue that discrete audio tokenization should be learned fully end-to-end using a homogeneous and scalable architecture. To this end, we first propose CAT (Causal Audio Tokenizer with Transformer), a purely Transformer-based architecture that jointly optimizes the encoder, quantizer, and decoder from scratch for high-fidelity reconstruction. Building on the CAT architecture, we develop MOSS-Audio-Tokenizer, a large-scale audio tokenizer featuring 1.6 billion parameters, pre-trained on 3 million hours of diverse, general audio data. We show that this simple, fully end-to-end approach built from homogeneous, causal Transformer blocks scales gracefully and supports high-fidelity reconstruction across diverse audio domains. Across speech, sound, and music, MOSS-Audio-Tokenizer consistently outperforms prior codecs over a wide range of bitrates, while exhibiting predictable improvements with increased scale. Notably, leveraging the discrete tokens from our model, we develop the first purely autoregressive TTS model that surpasses prior non-autoregressive and cascaded systems. Furthermore, MOSS-Audio-Tokenizer enables competitive ASR performance without auxiliary encoders. Our findings position the CAT architecture as a unified, scalable interface for the next generation of native audio foundation models.

6

GigaBrain-0.5M*: a VLA That Learns From World Model-Based Reinforcement Learning

Feb 12
ByGigaBrain Team, Boyuan Wang, Chaojun Ni, Guan Huang, Guosheng Zhao, Hao Li, Jie Li, Jindi Lv, Jingyu Liu, Lv Feng, Mingming Yu, Peng Li, Qiuping Deng, Tianze Liu, Xinyu Zhou, Xinze Chen, Xiaofeng Wang, Yang Wang, Yifan Li, Yifei Nie, Yilong Li, Yukun Zhou, Yun Ye, Zhichao Liu, Zheng Zhu
33
1

Vision-language-action (VLA) models that directly predict multi-step action chunks from current observations face inherent limitations due to constrained scene understanding and weak future anticipation capabilities. In contrast, video world models pre-trained on web-scale video corpora exhibit robust spatiotemporal reasoning and accurate future prediction, making them a natural foundation for enhancing VLA learning. Therefore, we propose GigaBrain-0.5M*, a VLA model trained via world model-based reinforcement learning. Built upon GigaBrain-0.5, which is pre-trained on over 10,000 hours of robotic manipulation data, whose intermediate version currently ranks first on the international RoboChallenge benchmark. GigaBrain-0.5M* further integrates world model-based reinforcement learning via RAMP (Reinforcement leArning via world Model-conditioned Policy) to enable robust cross-task adaptation. Empirical results demonstrate that RAMP achieves substantial performance gains over the RECAP baseline, yielding improvements of approximately 30\% on challenging tasks including Laundry Folding, Box Packing, and Espresso Preparation. Critically, GigaBrain-0.5M^* exhibits reliable long-horizon execution, consistently accomplishing complex manipulation tasks without failure as validated by real-world deployment videos on our https://gigabrain05m.github.io{project page}.

7

LawThinker: A Deep Research Legal Agent in Dynamic Environments

Feb 12
ByXinyu Yang, Chenlong Deng, Tongyu Wen, Binyu Xie, Zhicheng Dou
31
1

Legal reasoning requires not only correct outcomes but also procedurally compliant reasoning processes. However, existing methods lack mechanisms to verify intermediate reasoning steps, allowing errors such as inapplicable statute citations to propagate undetected through the reasoning chain. To address this, we propose LawThinker, an autonomous legal research agent that adopts an Explore-Verify-Memorize strategy for dynamic judicial environments. The core idea is to enforce verification as an atomic operation after every knowledge exploration step. A DeepVerifier module examines each retrieval result along three dimensions of knowledge accuracy, fact-law relevance, and procedural compliance, with a memory module for cross-round knowledge reuse in long-horizon tasks. Experiments on the dynamic benchmark J1-EVAL show that LawThinker achieves a 24% improvement over direct reasoning and an 11% gain over workflow-based methods, with particularly strong improvements on process-oriented metrics. Evaluations on three static benchmarks further confirm its generalization capability. The code is available at https://github.com/yxy-919/LawThinker-agent .

8

Thinking with Drafting: Optical Decompression via Logical Reconstruction

Feb 12
ByJingxuan Wei, Honghao He, Caijun Jia, Siyuan Li, Zheng Sun, Yuhang Xu, Yuanyuan Lin, Linzhuang Sun, Yuchen Wu, Bihui Yu, Xiangxiang Zhang, Cheng Tan
27
2

Existing multimodal large language models have achieved high-fidelity visual perception and exploratory visual generation. However, a precision paradox persists in complex reasoning tasks: optical perception systems transcribe symbols without capturing logical topology, while pixel-based generative models produce visual artifacts lacking mathematical exactness. To bridge this gap, we propose that reasoning over visual inputs be reconceptualized as optical decompression-the process of reconstructing latent logical structures from compressed visual tokens. Guided by the axiom that Parsing is Reasoning, we introduce Thinking with Drafting (TwD), which utilizes a minimalist Domain-Specific Language (DSL) as a grounding intermediate representation. Unlike standard approaches that hallucinate answers directly, TwD forces the model to draft its mental model into executable code, rendering deterministic visual proofs for self-verification. To validate this, we present VisAlg, a visual algebra benchmark. Experiments demonstrate that TwD serve as a superior cognitive scaffold. Our work establishes a closed-loop system where visual generation acts not as a creative output but as a logical verifier, offering a generalizable path for visual reasoning.

9

Stroke of Surprise: Progressive Semantic Illusions in Vector Sketching

Feb 12
ByHuai-Hsun Cheng, Siang-Ling Zhang, Yu-Lun Liu
24
1

Visual illusions traditionally rely on spatial manipulations such as multi-view consistency. In this work, we introduce Progressive Semantic Illusions, a novel vector sketching task where a single sketch undergoes a dramatic semantic transformation through the sequential addition of strokes. We present Stroke of Surprise, a generative framework that optimizes vector strokes to satisfy distinct semantic interpretations at different drawing stages. The core challenge lies in the "dual-constraint": initial prefix strokes must form a coherent object (e.g., a duck) while simultaneously serving as the structural foundation for a second concept (e.g., a sheep) upon adding delta strokes. To address this, we propose a sequence-aware joint optimization framework driven by a dual-branch Score Distillation Sampling (SDS) mechanism. Unlike sequential approaches that freeze the initial state, our method dynamically adjusts prefix strokes to discover a "common structural subspace" valid for both targets. Furthermore, we introduce a novel Overlay Loss that enforces spatial complementarity, ensuring structural integration rather than occlusion. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art baselines in recognizability and illusion strength, successfully expanding visual anagrams from the spatial to the temporal dimension. Project page: https://stroke-of-surprise.github.io/

10

Think Longer to Explore Deeper: Learn to Explore In-Context via Length-Incentivized Reinforcement Learning

Feb 12
ByFuting Wang, Jianhao Yan, Yun Luo, Ganqu Cui, Zhi Wang, Xiaoye Qu, Yue Zhang, Yu Cheng, Tao Lin
24
2

Achieving effective test-time scaling requires models to engage in In-Context Exploration -- the intrinsic ability to generate, verify, and refine multiple reasoning hypotheses within a single continuous context. Grounded in State Coverage theory, our analysis identifies a critical bottleneck to enabling this capability: while broader state coverage requires longer reasoning trajectories, the probability of sampling such sequences decays exponentially during autoregressive generation, a phenomenon we term the ``Shallow Exploration Trap''. To bridge this gap, we propose Length-Incentivized Exploration(\method). This simple yet effective recipe explicitly encourages models to explore more via a length-based reward coupled with a redundancy penalty, thereby maximizing state coverage in two-step manner. Comprehensive experiments across different models (Qwen3, Llama) demonstrate that \method effectively incentivize in-context exploration. As a result, our method achieves an average improvement of 4.4\% on in-domain tasks and a 2.7\% gain on out-of-domain benchmarks.

11

RISE: Self-Improving Robot Policy with Compositional World Model

Feb 11
ByJiazhi Yang, Kunyang Lin, Jinwei Li, Wencong Zhang, Tianwei Lin, Longyan Wu, Zhizhong Su, Hao Zhao, Ya-Qin Zhang, Li Chen, Ping Luo, Xiangyu Yue, Hongyang Li
18
1

Despite the sustained scaling on model capacity and data acquisition, Vision-Language-Action (VLA) models remain brittle in contact-rich and dynamic manipulation tasks, where minor execution deviations can compound into failures. While reinforcement learning (RL) offers a principled path to robustness, on-policy RL in the physical world is constrained by safety risk, hardware cost, and environment reset. To bridge this gap, we present RISE, a scalable framework of robotic reinforcement learning via imagination. At its core is a Compositional World Model that (i) predicts multi-view future via a controllable dynamics model, and (ii) evaluates imagined outcomes with a progress value model, producing informative advantages for the policy improvement. Such compositional design allows state and value to be tailored by best-suited yet distinct architectures and objectives. These components are integrated into a closed-loop self-improving pipeline that continuously generates imaginary rollouts, estimates advantages, and updates the policy in imaginary space without costly physical interaction. Across three challenging real-world tasks, RISE yields significant improvement over prior art, with more than +35% absolute performance increase in dynamic brick sorting, +45% for backpack packing, and +35% for box closing, respectively.

12

dVoting: Fast Voting for dLLMs

Feb 12
BySicheng Feng, Zigeng Chen, Xinyin Ma, Gongfan Fang, Xinchao Wang
17
1

Diffusion Large Language Models (dLLMs) represent a new paradigm beyond autoregressive modeling, offering competitive performance while naturally enabling a flexible decoding process. Specifically, dLLMs can generate tokens at arbitrary positions in parallel, endowing them with significant potential for parallel test-time scaling, which was previously constrained by severe inefficiency in autoregressive modeling. In this work, we introduce dVoting, a fast voting technique that boosts reasoning capability without training, with only an acceptable extra computational overhead. dVoting is motivated by the observation that, across multiple samples for the same prompt, token predictions remain largely consistent, whereas performance is determined by a small subset of tokens exhibiting cross-sample variability. Leveraging the arbitrary-position generation capability of dLLMs, dVoting performs iterative refinement by sampling, identifying uncertain tokens via consistency analysis, regenerating them through voting, and repeating this process until convergence. Extensive evaluations demonstrate that dVoting consistently improves performance across various benchmarks. It achieves gains of 6.22%-7.66% on GSM8K, 4.40%-7.20% on MATH500, 3.16%-14.84% on ARC-C, and 4.83%-5.74% on MMLU. Our code is available at https://github.com/fscdc/dVoting

13

χ_{0}: Resource-Aware Robust Manipulation via Taming Distributional Inconsistencies

Feb 9
ByChecheng Yu, Chonghao Sima, Gangcheng Jiang, Hai Zhang, Haoguang Mai, Hongyang Li, Huijie Wang, Jin Chen, Kaiyang Wu, Li Chen, Lirui Zhao, Modi Shi, Ping Luo, Qingwen Bu, Shijia Peng, Tianyu Li, Yibo Yuan
16
1

High-reliability long-horizon robotic manipulation has traditionally relied on large-scale data and compute to understand complex real-world dynamics. However, we identify that the primary bottleneck to real-world robustness is not resource scale alone, but the distributional shift among the human demonstration distribution, the inductive bias learned by the policy, and the test-time execution distribution -- a systematic inconsistency that causes compounding errors in multi-stage tasks. To mitigate these inconsistencies, we propose χ_{0}, a resource-efficient framework with effective modules designated to achieve production-level robustness in robotic manipulation. Our approach builds off three technical pillars: (i) Model Arithmetic, a weight-space merging strategy that efficiently soaks up diverse distributions of different demonstrations, varying from object appearance to state variations; (ii) Stage Advantage, a stage-aware advantage estimator that provides stable, dense progress signals, overcoming the numerical instability of prior non-stage approaches; and (iii) Train-Deploy Alignment, which bridges the distribution gap via spatio-temporal augmentation, heuristic DAgger corrections, and temporal chunk-wise smoothing. χ_{0} enables two sets of dual-arm robots to collaboratively orchestrate long-horizon garment manipulation, spanning tasks from flattening, folding, to hanging different clothes. Our method exhibits high-reliability autonomy; we are able to run the system from arbitrary initial state for consecutive 24 hours non-stop. Experiments validate that χ_{0} surpasses the state-of-the-art π_{0.5} in success rate by nearly 250%, with only 20-hour data and 8 A100 GPUs. Code, data and models will be released to facilitate the community.

14

EgoHumanoid: Unlocking In-the-Wild Loco-Manipulation with Robot-Free Egocentric Demonstration

Feb 10
ByModi Shi, Shijia Peng, Jin Chen, Haoran Jiang, Yinghui Li, Di Huang, Ping Luo, Hongyang Li, Li Chen
13
1

Human demonstrations offer rich environmental diversity and scale naturally, making them an appealing alternative to robot teleoperation. While this paradigm has advanced robot-arm manipulation, its potential for the more challenging, data-hungry problem of humanoid loco-manipulation remains largely unexplored. We present EgoHumanoid, the first framework to co-train a vision-language-action policy using abundant egocentric human demonstrations together with a limited amount of robot data, enabling humanoids to perform loco-manipulation across diverse real-world environments. To bridge the embodiment gap between humans and robots, including discrepancies in physical morphology and viewpoint, we introduce a systematic alignment pipeline spanning from hardware design to data processing. A portable system for scalable human data collection is developed, and we establish practical collection protocols to improve transferability. At the core of our human-to-humanoid alignment pipeline lies two key components. The view alignment reduces visual domain discrepancies caused by camera height and perspective variation. The action alignment maps human motions into a unified, kinematically feasible action space for humanoid control. Extensive real-world experiments demonstrate that incorporating robot-free egocentric data significantly outperforms robot-only baselines by 51\%, particularly in unseen environments. Our analysis further reveals which behaviors transfer effectively and the potential for scaling human data.

15

NarraScore: Bridging Visual Narrative and Musical Dynamics via Hierarchical Affective Control

Feb 9
ByYufan Wen, Zhaocheng Liu, YeGuo Hua, Ziyi Guo, Lihua Zhang, Chun Yuan, Jian Wu
11
1

Synthesizing coherent soundtracks for long-form videos remains a formidable challenge, currently stalled by three critical impediments: computational scalability, temporal coherence, and, most critically, a pervasive semantic blindness to evolving narrative logic. To bridge these gaps, we propose NarraScore, a hierarchical framework predicated on the core insight that emotion serves as a high-density compression of narrative logic. Uniquely, we repurpose frozen Vision-Language Models (VLMs) as continuous affective sensors, distilling high-dimensional visual streams into dense, narrative-aware Valence-Arousal trajectories. Mechanistically, NarraScore employs a Dual-Branch Injection strategy to reconcile global structure with local dynamism: a Global Semantic Anchor ensures stylistic stability, while a surgical Token-Level Affective Adapter modulates local tension via direct element-wise residual injection. This minimalist design bypasses the bottlenecks of dense attention and architectural cloning, effectively mitigating the overfitting risks associated with data scarcity. Experiments demonstrate that NarraScore achieves state-of-the-art consistency and narrative alignment with negligible computational overhead, establishing a fully autonomous paradigm for long-video soundtrack generation.

16

DeepSight: An All-in-One LM Safety Toolkit

Feb 12
ByBo Zhang, Jiaxuan Guo, Lijun Li, Dongrui Liu, Sujin Chen, Guanxu Chen, Zhijie Zheng, Qihao Lin, Lewen Yan, Chen Qian, Yijin Zhou, Yuyao Wu, Shaoxiong Guo, Tianyi Du, Jingyi Yang, Xuhao Hu, Ziqi Miao, Xiaoya Lu, Jing Shao, Xia Hu
11
2

As the development of Large Models (LMs) progresses rapidly, their safety is also a priority. In current Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) safety workflow, evaluation, diagnosis, and alignment are often handled by separate tools. Specifically, safety evaluation can only locate external behavioral risks but cannot figure out internal root causes. Meanwhile, safety diagnosis often drifts from concrete risk scenarios and remains at the explainable level. In this way, safety alignment lack dedicated explanations of changes in internal mechanisms, potentially degrading general capabilities. To systematically address these issues, we propose an open-source project, namely DeepSight, to practice a new safety evaluation-diagnosis integrated paradigm. DeepSight is low-cost, reproducible, efficient, and highly scalable large-scale model safety evaluation project consisting of a evaluation toolkit DeepSafe and a diagnosis toolkit DeepScan. By unifying task and data protocols, we build a connection between the two stages and transform safety evaluation from black-box to white-box insight. Besides, DeepSight is the first open source toolkit that support the frontier AI risk evaluation and joint safety evaluation and diagnosis.

17

Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation

Feb 5
ByZhiqi Yu, Zhangquan Chen, Mengting Liu, Heye Zhang, Liangqiong Qu
10
1

Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.

18

Sparse Video Generation Propels Real-World Beyond-the-View Vision-Language Navigation

Feb 5
ByHai Zhang, Siqi Liang, Li Chen, Yuxian Li, Yukuan Xu, Yichao Zhong, Fu Zhang, Hongyang Li
10
1

Why must vision-language navigation be bound to detailed and verbose language instructions? While such details ease decision-making, they fundamentally contradict the goal for navigation in the real-world. Ideally, agents should possess the autonomy to navigate in unknown environments guided solely by simple and high-level intents. Realizing this ambition introduces a formidable challenge: Beyond-the-View Navigation (BVN), where agents must locate distant, unseen targets without dense and step-by-step guidance. Existing large language model (LLM)-based methods, though adept at following dense instructions, often suffer from short-sighted behaviors due to their reliance on short-horimzon supervision. Simply extending the supervision horizon, however, destabilizes LLM training. In this work, we identify that video generation models inherently benefit from long-horizon supervision to align with language instructions, rendering them uniquely suitable for BVN tasks. Capitalizing on this insight, we propose introducing the video generation model into this field for the first time. Yet, the prohibitive latency for generating videos spanning tens of seconds makes real-world deployment impractical. To bridge this gap, we propose SparseVideoNav, achieving sub-second trajectory inference guided by a generated sparse future spanning a 20-second horizon. This yields a remarkable 27x speed-up compared to the unoptimized counterpart. Extensive real-world zero-shot experiments demonstrate that SparseVideoNav achieves 2.5x the success rate of state-of-the-art LLM baselines on BVN tasks and marks the first realization of such capability in challenging night scenes.

19

Adapting Vision-Language Models for E-commerce Understanding at Scale

Feb 12
ByMatteo Nulli, Vladimir Orshulevich, Tala Bazazo, Christian Herold, Michael Kozielski, Marcin Mazur, Szymon Tuzel, Cees G. M. Snoek, Seyyed Hadi Hashemi, Omar Javed, Yannick Versley, Shahram Khadivi
9
3

E-commerce product understanding demands by nature, strong multimodal comprehension from text, images, and structured attributes. General-purpose Vision-Language Models (VLMs) enable generalizable multimodal latent modelling, yet there is no documented, well-known strategy for adapting them to the attribute-centric, multi-image, and noisy nature of e-commerce data, without sacrificing general performance. In this work, we show through a large-scale experimental study, how targeted adaptation of general VLMs can substantially improve e-commerce performance while preserving broad multimodal capabilities. Furthermore, we propose a novel extensive evaluation suite covering deep product understanding, strict instruction following, and dynamic attribute extraction.

20

PISCO: Precise Video Instance Insertion with Sparse Control

Feb 9
ByXiangbo Gao, Renjie Li, Xinghao Chen, Yuheng Wu, Suofei Feng, Qing Yin, Zhengzhong Tu
8
1

The landscape of AI video generation is undergoing a pivotal shift: moving beyond general generation - which relies on exhaustive prompt-engineering and "cherry-picking" - towards fine-grained, controllable generation and high-fidelity post-processing. In professional AI-assisted filmmaking, it is crucial to perform precise, targeted modifications. A cornerstone of this transition is video instance insertion, which requires inserting a specific instance into existing footage while maintaining scene integrity. Unlike traditional video editing, this task demands several requirements: precise spatial-temporal placement, physically consistent scene interaction, and the faithful preservation of original dynamics - all achieved under minimal user effort. In this paper, we propose PISCO, a video diffusion model for precise video instance insertion with arbitrary sparse keyframe control. PISCO allows users to specify a single keyframe, start-and-end keyframes, or sparse keyframes at arbitrary timestamps, and automatically propagates object appearance, motion, and interaction. To address the severe distribution shift induced by sparse conditioning in pretrained video diffusion models, we introduce Variable-Information Guidance for robust conditioning and Distribution-Preserving Temporal Masking to stabilize temporal generation, together with geometry-aware conditioning for realistic scene adaptation. We further construct PISCO-Bench, a benchmark with verified instance annotations and paired clean background videos, and evaluate performance using both reference-based and reference-free perceptual metrics. Experiments demonstrate that PISCO consistently outperforms strong inpainting and video editing baselines under sparse control, and exhibits clear, monotonic performance improvements as additional control signals are provided. Project page: xiangbogaobarry.github.io/PISCO.

21

T3D: Few-Step Diffusion Language Models via Trajectory Self-Distillation with Direct Discriminative Optimization

Feb 12
ByTunyu Zhang, Xinxi Zhang, Ligong Han, Haizhou Shi, Xiaoxiao He, Zhuowei Li, Hao Wang, Kai Xu, Akash Srivastava, Hao Wang, Vladimir Pavlovic, Dimitris N. Metaxas
6
1

Diffusion large language models (DLLMs) have the potential to enable fast text generation by decoding multiple tokens in parallel. However, in practice, their inference efficiency is constrained by the need for many refinement steps, while aggressively reducing the number of steps leads to a substantial degradation in generation quality. To alleviate this, we propose a trajectory self-distillation framework that improves few-step decoding by distilling the model's own generative trajectories. We incorporate Direct Discriminative Optimization (DDO), a reverse-KL objective that promotes mode-seeking distillation and encourages the student to concentrate on high-probability teacher modes. Across benchmarks, our approach consistently outperforms strong few-step baselines and standard training under tight step budgets. Although full-step decoding remains superior, we substantially narrow the gap, establishing a strong foundation towards practical few-step DLLMs. The source code is available at https://github.com/Tyrion58/T3D.

22

Dreaming in Code for Curriculum Learning in Open-Ended Worlds

Feb 9
ByKonstantinos Mitsides, Maxence Faldor, Antoine Cully
6
1

Open-ended learning frames intelligence as emerging from continual interaction with an ever-expanding space of environments. While recent advances have utilized foundation models to programmatically generate diverse environments, these approaches often focus on discovering isolated behaviors rather than orchestrating sustained progression. In complex open-ended worlds, the large combinatorial space of possible challenges makes it difficult for agents to discover sequences of experiences that remain consistently learnable. To address this, we propose Dreaming in Code (DiCode), a framework in which foundation models synthesize executable environment code to scaffold learning toward increasing competence. In DiCode, "dreaming" takes the form of materializing code-level variations of the world. We instantiate DiCode in Craftax, a challenging open-ended benchmark characterized by rich mechanics and long-horizon progression. Empirically, DiCode enables agents to acquire long-horizon skills, achieving a 16% improvement in mean return over the strongest baseline and non-zero success on late-game combat tasks where prior methods fail. Our results suggest that code-level environment design provides a practical mechanism for curriculum control, enabling the construction of intermediate environments that bridge competence gaps in open-ended worlds. Project page and source code are available at https://konstantinosmitsides.github.io/dreaming-in-code and https://github.com/konstantinosmitsides/dreaming-in-code.

23

MiniCPM-SALA: Hybridizing Sparse and Linear Attention for Efficient Long-Context Modeling

Feb 12
ByMiniCPM Team, Wenhao An, Yingfa Chen, Yewei Fang, Jiayi Li, Xin Li, Yaohui Li, Yishan Li, Yuxuan Li, Biyuan Lin, Chuan Liu, Hezi Liu, Siyuan Liu, Hongya Lyu, Yinxu Pan, Shixin Ren, Xingyu Shen, Zhou Su, Haojun Sun, Yangang Sun, Zhen Leng Thai, Xin Tian, Rui Wang, Xiaorong Wang, Yudong Wang, Bo Wu, Xiaoyue Xu, Dong Xu, Shuaikang Xue, Jiawei Yang, Bowen Zhang, Jinqian Zhang, Letian Zhang, Shengnan Zhang, Xinyu Zhang, Xinyuan Zhang, Zhu Zhang, Hengyu Zhao, Jiacheng Zhao, Jie Zhou, Zihan Zhou, Shuo Wang, Chaojun Xiao, Xu Han, Zhiyuan Liu, Maosong Sun
5
0

The evolution of large language models (LLMs) towards applications with ultra-long contexts faces challenges posed by the high computational and memory costs of the Transformer architecture. While existing sparse and linear attention mechanisms attempt to mitigate these issues, they typically involve a trade-off between memory efficiency and model performance. This paper introduces MiniCPM-SALA, a 9B-parameter hybrid architecture that integrates the high-fidelity long-context modeling of sparse attention (InfLLM-V2) with the global efficiency of linear attention (Lightning Attention). By employing a layer selection algorithm to integrate these mechanisms in a 1:3 ratio and utilizing a hybrid positional encoding (HyPE), the model maintains efficiency and performance for long-context tasks. Furthermore, we introduce a cost-effective continual training framework that transforms pre-trained Transformer-based models into hybrid models, which reduces training costs by approximately 75% compared to training from scratch. Extensive experiments show that MiniCPM-SALA maintains general capabilities comparable to full-attention models while offering improved efficiency. On a single NVIDIA A6000D GPU, the model achieves up to 3.5x the inference speed of the full-attention model at the sequence length of 256K tokens and supports context lengths of up to 1M tokens, a scale where traditional full-attention 8B models fail because of memory constraints.

24

Voxtral Realtime

Feb 11
ByAlexander H. Liu, Andy Ehrenberg, Andy Lo, Chen-Yo Sun, Guillaume Lample, Jean-Malo Delignon, Khyathi Raghavi Chandu, Patrick von Platen, Pavankumar Reddy Muddireddy, Rohin Arora, Sanchit Gandhi, Sandeep Subramanian, Soham Ghosh, Srijan Mishra, Abhinav Rastogi, Alan Jeffares, Albert Jiang, Alexandre Sablayrolles, Amélie Héliou, Andrew Bai, Angele Lenglemetz, Anmol Agarwal, Anton Eliseev, Antonia Calvi, Arjun Majumdar, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Benjamin Tibi, Clémence Lanfranchi, Connor Chen, Corentin Barreau, Corentin Sautier, Cyprien Courtot, Darius Dabert, Diego de las Casas, Elliot Chane-Sane, Enguerrand Paquin, Faruk Ahmed, Federico Baldassarre, Gabrielle Berrada, Gaëtan Ecrepont, Gauthier Guinet, Genevieve Hayes, Georgii Novikov, Giada Pistilli, Guillaume Martin, Gunjan Dhanuka, Gunshi Gupta, Han Zhou, Indraneel Mukherjee, Irene Zhang, Jaeyoung Kim, Jan Ludziejewski, Jason Rute, Joachim Studnia, John Harvill, Jonas Amar, Josselin Somerville Roberts, Julien Tauran, Karmesh Yadav, Kartik Khandelwal, Kush Jain, Laurence Aitchison, Léonard Blier, Lingxiao Zhao, Louis Martin, Lucile Saulnier, Luyu Gao, Maarten Buyl, Manan Sharma, Margaret Jennings, Marie Pellat, Mark Prins, Mathieu Poirée, Mathilde Guillaumin, Matthieu Dinot, Matthieu Futeral, Maxime Darrin, Maximilian Augustin, Mert Unsal, Mia Chiquier, Nathan Grinsztajn, Neha Gupta, Olivier Bousquet, Olivier Duchenne, Patricia Wang, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Philomène Chagniot, Pierre Stock, Piotr Miłoś, Prateek Gupta, Pravesh Agrawal, Quentin Torroba, Ram Ramrakhya, Rishi Shah, Romain Sauvestre, Roman Soletskyi, Rosalie Millner, Sagar Vaze, Samuel Humeau, Siddharth Gandhi, Sumukh Aithal, Szymon Antoniak, Teven Le Scao, Théo Cachet, Theo Simon Sorg, Thibaut Lavril, Thomas Chabal, Thomas Foubert, Thomas Robert, Thomas Wang, Tim Lawson, Tom Bewley, Tom Edwards, Tyler Wang, Valeriia Nemychnikova, Van Phung, Vedant Nanda, Victor Jouault, Virgile Richard, Vladislav Bataev, Wassim Bouaziz, Wen-Ding Li, William Marshall, Xinghui Li, Xingran Guo, Xinyu Yang, Yannic Neuhaus, Yihan Wang, Zaccharie Ramzi, Zhenlin Xu
5
0

We introduce Voxtral Realtime, a natively streaming automatic speech recognition model that matches offline transcription quality at sub-second latency. Unlike approaches that adapt offline models through chunking or sliding windows, Voxtral Realtime is trained end-to-end for streaming, with explicit alignment between audio and text streams. Our architecture builds on the Delayed Streams Modeling framework, introducing a new causal audio encoder and Ada RMS-Norm for improved delay conditioning. We scale pretraining to a large-scale dataset spanning 13 languages. At a delay of 480ms, Voxtral Realtime achieves performance on par with Whisper, the most widely deployed offline transcription system. We release the model weights under the Apache 2.0 license.

25

ThinkRouter: Efficient Reasoning via Routing Thinking between Latent and Discrete Spaces

Feb 12
ByXin Xu, Tong Yu, Xiang Chen, Haoliang Wang, Julian McAuley, Saayan Mitra
5
1

Recent work explores latent reasoning to improve reasoning efficiency by replacing explicit reasoning trajectories with continuous representations in a latent space, yet its effectiveness varies across settings. Analysis of model confidence dynamics under latent reasoning reveals that thinking trajectories ending in incorrect answers contain fewer low-confidence steps than those ending in correct answers. Meanwhile, we suggest that soft embeddings aggregated by multiple low-confidence thinking alternatives may introduce and propagate noise, leading to high confidence in unreliable reasoning trajectories. Motivated by these observations, ThinkRouter, an inference-time confidence-aware routing mechanism is proposed to avoid high confidence and noise for efficient reasoning. ThinkRouter routes thinking to the discrete token space when model confidence is low, and to the latent space otherwise. Extensive experiments on STEM reasoning and coding benchmarks across diverse large reasoning models demonstrate that ThinkRouter outperforms explicit CoT, random routing, and latent reasoning baselines in terms of accuracy, achieving an average improvement of 19.70 points in Pass@1, while reducing generation length by up to 15.55%. Further comprehensive analysis reveals that ThinkRouter can calibrate errors arising from explicit CoT and latent reasoning, and accelerates end-of-thinking token generation by globally lowering model confidence.

26

MolmoSpaces: A Large-Scale Open Ecosystem for Robot Navigation and Manipulation

Feb 11
ByYejin Kim, Wilbert Pumacay, Omar Rayyan, Max Argus, Winson Han, Eli VanderBilt, Jordi Salvador, Abhay Deshpande, Rose Hendrix, Snehal Jauhri, Shuo Liu, Nur Muhammad Mahi Shafiullah, Maya Guru, Ainaz Eftekhar, Karen Farley, Donovan Clay, Jiafei Duan, Arjun Guru, Piper Wolters, Alvaro Herrasti, Ying-Chun Lee, Georgia Chalvatzaki, Yuchen Cui, Ali Farhadi, Dieter Fox, Ranjay Krishna
4
0

Deploying robots at scale demands robustness to the long tail of everyday situations. The countless variations in scene layout, object geometry, and task specifications that characterize real environments are vast and underrepresented in existing robot benchmarks. Measuring this level of generalization requires infrastructure at a scale and diversity that physical evaluation alone cannot provide. We introduce MolmoSpaces, a fully open ecosystem to support large-scale benchmarking of robot policies. MolmoSpaces consists of over 230k diverse indoor environments, ranging from handcrafted household scenes to procedurally generated multiroom houses, populated with 130k richly annotated object assets, including 48k manipulable objects with 42M stable grasps. Crucially, these environments are simulator-agnostic, supporting popular options such as MuJoCo, Isaac, and ManiSkill. The ecosystem supports the full spectrum of embodied tasks: static and mobile manipulation, navigation, and multiroom long-horizon tasks requiring coordinated perception, planning, and interaction across entire indoor environments. We also design MolmoSpaces-Bench, a benchmark suite of 8 tasks in which robots interact with our diverse scenes and richly annotated objects. Our experiments show MolmoSpaces-Bench exhibits strong sim-to-real correlation (R = 0.96, ho = 0.98), confirm newer and stronger zero-shot policies outperform earlier versions in our benchmarks, and identify key sensitivities to prompt phrasing, initial joint positions, and camera occlusion. Through MolmoSpaces and its open-source assets and tooling, we provide a foundation for scalable data generation, policy training, and benchmark creation for robot learning research.

27

Single-minus gluon tree amplitudes are nonzero

Feb 12
ByAlfredo Guevara, Alexandru Lupsasca, David Skinner, Andrew Strominger, Kevin Weil
3
1

Single-minus tree-level n-gluon scattering amplitudes are reconsidered. Often presumed to vanish, they are shown here to be nonvanishing for certain "half-collinear" configurations existing in Klein space or for complexified momenta. We derive a piecewise-constant closed-form expression for the decay of a single minus-helicity gluon into n-1 plus-helicity gluons as a function of their momenta. This formula nontrivially satisfies multiple consistency conditions including Weinberg's soft theorem.

28

Budget-Constrained Agentic Large Language Models: Intention-Based Planning for Costly Tool Use

Feb 12
ByHanbing Liu, Chunhao Tian, Nan An, Ziyuan Wang, Pinyan Lu, Changyuan Yu, Qi Qi
3
1

We study budget-constrained tool-augmented agents, where a large language model must solve multi-step tasks by invoking external tools under a strict monetary budget. We formalize this setting as sequential decision making in context space with priced and stochastic tool executions, making direct planning intractable due to massive state-action spaces, high variance of outcomes and prohibitive exploration cost. To address these challenges, we propose INTENT, an inference-time planning framework that leverages an intention-aware hierarchical world model to anticipate future tool usage, risk-calibrated cost, and guide decisions online. Across cost-augmented StableToolBench, INTENT strictly enforces hard budget feasibility while substantially improving task success over baselines, and remains robust under dynamic market shifts such as tool price changes and varying budgets.

29

MetaphorStar: Image Metaphor Understanding and Reasoning with End-to-End Visual Reinforcement Learning

Feb 11
ByChenhao Zhang, Yazhe Niu, Hongsheng Li
3
1

Metaphorical comprehension in images remains a critical challenge for Nowadays AI systems. While Multimodal Large Language Models (MLLMs) excel at basic Visual Question Answering (VQA), they consistently struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. This difficulty stems from the task's demand for sophisticated multi-hop reasoning, cultural context, and Theory of Mind (ToM) capabilities, which current models lack. To fill this gap, we propose MetaphorStar, the first end-to-end visual reinforcement learning (RL) framework for image implication tasks. Our framework includes three core components: the fine-grained dataset TFQ-Data, the visual RL method TFQ-GRPO, and the well-structured benchmark TFQ-Bench. Our fully open-source MetaphorStar family, trained using TFQ-GRPO on TFQ-Data, significantly improves performance by an average of 82.6% on the image implication benchmarks. Compared with 20+ mainstream MLLMs, MetaphorStar-32B achieves state-of-the-art (SOTA) on Multiple-Choice Question and Open-Style Question, significantly outperforms the top closed-source model Gemini-3.0-pro on True-False Question. Crucially, our experiments reveal that learning image implication tasks improves the general understanding ability, especially the complex visual reasoning ability. We further provide a systematic analysis of model parameter scaling, training data scaling, and the impact of different model architectures and training strategies, demonstrating the broad applicability of our method. We open-sourced all model weights, datasets, and method code at https://metaphorstar.github.io.

30

Multimodal Fact-Level Attribution for Verifiable Reasoning

Feb 12
ByDavid Wan, Han Wang, Ziyang Wang, Elias Stengel-Eskin, Hyunji Lee, Mohit Bansal
3
1

Multimodal large language models (MLLMs) are increasingly used for real-world tasks involving multi-step reasoning and long-form generation, where reliability requires grounding model outputs in heterogeneous input sources and verifying individual factual claims. However, existing multimodal grounding benchmarks and evaluation methods focus on simplified, observation-based scenarios or limited modalities and fail to assess attribution in complex multimodal reasoning. We introduce MuRGAt (Multimodal Reasoning with Grounded Attribution), a benchmark for evaluating fact-level multimodal attribution in settings that require reasoning beyond direct observation. Given inputs spanning video, audio, and other modalities, MuRGAt requires models to generate answers with explicit reasoning and precise citations, where each citation specifies both modality and temporal segments. To enable reliable assessment, we introduce an automatic evaluation framework that strongly correlates with human judgments. Benchmarking with human and automated scores reveals that even strong MLLMs frequently hallucinate citations despite correct reasoning. Moreover, we observe a key trade-off: increasing reasoning depth or enforcing structured grounding often degrades accuracy, highlighting a significant gap between internal reasoning and verifiable attribution.

31

Gaia2: Benchmarking LLM Agents on Dynamic and Asynchronous Environments

Feb 12
ByRomain Froger, Pierre Andrews, Matteo Bettini, Amar Budhiraja, Ricardo Silveira Cabral, Virginie Do, Emilien Garreau, Jean-Baptiste Gaya, Hugo Laurençon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Gerard Moreno-Torres Bertran, Ulyana Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey Rusakov, Vladislav Vorotilov, Mengjue Wang, Ian Yu, Amine Benhalloum, Grégoire Mialon, Thomas Scialom
3
0

We introduce Gaia2, a benchmark for evaluating large language model agents in realistic, asynchronous environments. Unlike prior static or synchronous evaluations, Gaia2 introduces scenarios where environments evolve independently of agent actions, requiring agents to operate under temporal constraints, adapt to noisy and dynamic events, resolve ambiguity, and collaborate with other agents. Each scenario is paired with a write-action verifier, enabling fine-grained, action-level evaluation and making Gaia2 directly usable for reinforcement learning from verifiable rewards. Our evaluation of state-of-the-art proprietary and open-source models shows that no model dominates across capabilities: GPT-5 (high) reaches the strongest overall score of 42% pass@1 but fails on time-sensitive tasks, Claude-4 Sonnet trades accuracy and speed for cost, Kimi-K2 leads among open-source models with 21% pass@1. These results highlight fundamental trade-offs between reasoning, efficiency, robustness, and expose challenges in closing the "sim2real" gap. Gaia2 is built on a consumer environment with the open-source Agents Research Environments platform and designed to be easy to extend. By releasing Gaia2 alongside the foundational ARE framework, we aim to provide the community with a flexible infrastructure for developing, benchmarking, and training the next generation of practical agent systems.

32

ExStrucTiny: A Benchmark for Schema-Variable Structured Information Extraction from Document Images

Feb 12
ByMathieu Sibue, Andres Muñoz Garza, Samuel Mensah, Pranav Shetty, Zhiqiang Ma, Xiaomo Liu, Manuela Veloso
3
1

Enterprise documents, such as forms and reports, embed critical information for downstream applications like data archiving, automated workflows, and analytics. Although generalist Vision Language Models (VLMs) perform well on established document understanding benchmarks, their ability to conduct holistic, fine-grained structured extraction across diverse document types and flexible schemas is not well studied. Existing Key Entity Extraction (KEE), Relation Extraction (RE), and Visual Question Answering (VQA) datasets are limited by narrow entity ontologies, simple queries, or homogeneous document types, often overlooking the need for adaptable and structured extraction. To address these gaps, we introduce ExStrucTiny, a new benchmark dataset for structured Information Extraction (IE) from document images, unifying aspects of KEE, RE, and VQA. Built through a novel pipeline combining manual and synthetic human-validated samples, ExStrucTiny covers more varied document types and extraction scenarios. We analyze open and closed VLMs on this benchmark, highlighting challenges such as schema adaptation, query under-specification, and answer localization. We hope our work provides a bedrock for improving generalist models for structured IE in documents.

33

P-GenRM: Personalized Generative Reward Model with Test-time User-based Scaling

Feb 12
ByPinyi Zhang, Ting-En Lin, Yuchuan Wu, Jingyang Chen, Zongqi Wang, Hua Yang, Ze Xu, Fei Huang, Kai Zhang, Yongbin Li
3
1

Personalized alignment of large language models seeks to adapt responses to individual user preferences, typically via reinforcement learning. A key challenge is obtaining accurate, user-specific reward signals in open-ended scenarios. Existing personalized reward models face two persistent limitations: (1) oversimplifying diverse, scenario-specific preferences into a small, fixed set of evaluation principles, and (2) struggling with generalization to new users with limited feedback. To this end, we propose P-GenRM, the first Personalized Generative Reward Model with test-time user-based scaling. P-GenRM transforms preference signals into structured evaluation chains that derive adaptive personas and scoring rubrics across various scenarios. It further clusters users into User Prototypes and introduces a dual-granularity scaling mechanism: at the individual level, it adaptively scales and aggregates each user's scoring scheme; at the prototype level, it incorporates preferences from similar users. This design mitigates noise in inferred preferences and enhances generalization to unseen users through prototype-based transfer. Empirical results show that P-GenRM achieves state-of-the-art results on widely-used personalized reward model benchmarks, with an average improvement of 2.31%, and demonstrates strong generalization on an out-of-distribution dataset. Notably, Test-time User-based scaling provides an additional 3% boost, demonstrating stronger personalized alignment with test-time scalability.

34

Neural Additive Experts: Context-Gated Experts for Controllable Model Additivity

Feb 11
ByGuangzhi Xiong, Sanchit Sinha, Aidong Zhang
2
1

The trade-off between interpretability and accuracy remains a core challenge in machine learning. Standard Generalized Additive Models (GAMs) offer clear feature attributions but are often constrained by their strictly additive nature, which can limit predictive performance. Introducing feature interactions can boost accuracy yet may obscure individual feature contributions. To address these issues, we propose Neural Additive Experts (NAEs), a novel framework that seamlessly balances interpretability and accuracy. NAEs employ a mixture of experts framework, learning multiple specialized networks per feature, while a dynamic gating mechanism integrates information across features, thereby relaxing rigid additive constraints. Furthermore, we propose targeted regularization techniques to mitigate variance among expert predictions, facilitating a smooth transition from an exclusively additive model to one that captures intricate feature interactions while maintaining clarity in feature attributions. Our theoretical analysis and experiments on synthetic data illustrate the model's flexibility, and extensive evaluations on real-world datasets confirm that NAEs achieve an optimal balance between predictive accuracy and transparent, feature-level explanations. The code is available at https://github.com/Teddy-XiongGZ/NAE.

35

ScalSelect: Scalable Training-Free Multimodal Data Selection for Efficient Visual Instruction Tuning

Feb 12
ByChangti Wu, Jiahuai Mao, Yuzhuo Miao, Shijie Lian, Bin Yu, Xiaopeng Lin, Cong Huang, Lei Zhang, Kai Chen
2
1

Large-scale Visual Instruction Tuning (VIT) has become a key paradigm for advancing the performance of vision-language models (VLMs) across various multimodal tasks. However, training on the large-scale datasets is computationally expensive and inefficient due to redundancy in the data, which motivates the need for multimodal data selection to improve training efficiency. Existing data selection methods for VIT either require costly training or gradient computation. Training-free alternatives often depend on proxy models or datasets, instruction-agnostic representations, and pairwise similarity with quadratic complexity, limiting scalability and representation fidelity. In this work, we propose ScalSelect, a scalable training-free multimodal data selection method with linear-time complexity with respect to the number of samples, eliminating the need for external models or auxiliary datasets. ScalSelect first constructs sample representations by extracting visual features most attended by instruction tokens in the target VLM, capturing instruction-relevant information. It then identifies samples whose representations best approximate the dominant subspace of the full dataset representations, enabling scalable importance scoring without pairwise comparisons. Extensive experiments across multiple VLMs, datasets, and selection budgets demonstrate that ScalSelect achieves over 97.5% of the performance of training on the full dataset using only 16% of the data, and even outperforms full-data training in some settings. The code is available at https://github.com/ChangtiWu/ScalSelect{ScalSelect}.

36

ABot-N0: Technical Report on the VLA Foundation Model for Versatile Embodied Navigation

Feb 12
ByZedong Chu, Shichao Xie, Xiaolong Wu, Yanfen Shen, Minghua Luo, Zhengbo Wang, Fei Liu, Xiaoxu Leng, Junjun Hu, Mingyang Yin, Jia Lu, Yingnan Guo, Kai Yang, Jiawei Han, Xu Chen, Yanqing Zhu, Yuxiang Zhao, Xin Liu, Yirong Yang, Ye He, Jiahang Wang, Yang Cai, Tianlin Zhang, Li Gao, Liu Liu, Mingchao Sun, Fan Jiang, Chiyu Wang, Zhicheng Liu, Hongyu Pan, Honglin Han, Zhining Gu, Kuan Yang, Jianfang Zhang, Di Jing, Zihao Guan, Wei Guo, Guoqing Liu, Di Yang, Xiangpo Yang, Menglin Yang, Hongguang Xing, Weiguo Li, Mu Xu
2
0

Embodied navigation has long been fragmented by task-specific architectures. We introduce ABot-N0, a unified Vision-Language-Action (VLA) foundation model that achieves a ``Grand Unification'' across 5 core tasks: Point-Goal, Object-Goal, Instruction-Following, POI-Goal, and Person-Following. ABot-N0 utilizes a hierarchical ``Brain-Action'' architecture, pairing an LLM-based Cognitive Brain for semantic reasoning with a Flow Matching-based Action Expert for precise, continuous trajectory generation. To support large-scale learning, we developed the ABot-N0 Data Engine, curating 16.9M expert trajectories and 5.0M reasoning samples across 7,802 high-fidelity 3D scenes (10.7 km^2). ABot-N0 achieves new SOTA performance across 7 benchmarks, significantly outperforming specialized models. Furthermore, our Agentic Navigation System integrates a planner with hierarchical topological memory, enabling robust, long-horizon missions in dynamic real-world environments.

37

Sci-CoE: Co-evolving Scientific Reasoning LLMs via Geometric Consensus with Sparse Supervision

Feb 12
ByXiaohan He, Shiyang Feng, Songtao Huang, Lei Bai, Bin Wang, Bo Zhang
2
1

Large language models (LLMs) have demonstrated exceptional reasoning capabilities, and co-evolving paradigms have shown promising results in domains such as code and math. However, in scientific reasoning tasks, these models remain fragile due to unreliable solution evaluation and limited diversity in verification strategies. In this work, we propose Sci-CoE, a two-stage scientific co-evolving framework that enables models to self-evolve as both solver and verifier through a transition from sparse supervision to unsupervised learning. In the first stage, the model uses a small set of annotated data to establish fundamental correctness judgment anchors for the Verifier. In the second stage, we introduce a geometric reward mechanism that jointly considers consensus, reliability, and diversity, driving large-scale self-iteration on unlabeled data. Experiments on several general scientific benchmarks demonstrate that Sci-CoE enhances complex reasoning capabilities and exhibits strong scalability, facilitating the construction of more robust and diverse evaluation systems. Codes are available at https://github.com/InternScience/Sci-CoE.

38

Stemphonic: All-at-once Flexible Multi-stem Music Generation

Feb 10
ByShih-Lun Wu, Ge Zhu, Juan-Pablo Caceres, Cheng-Zhi Anna Huang, Nicholas J. Bryan
2
1

Music stem generation, the task of producing musically-synchronized and isolated instrument audio clips, offers the potential of greater user control and better alignment with musician workflows compared to conventional text-to-music models. Existing stem generation approaches, however, either rely on fixed architectures that output a predefined set of stems in parallel, or generate only one stem at a time, resulting in slow inference despite flexibility in stem combination. We propose Stemphonic, a diffusion-/flow-based framework that overcomes this trade-off and generates a variable set of synchronized stems in one inference pass. During training, we treat each stem as a batch element, group synchronized stems in a batch, and apply a shared noise latent to each group. At inference-time, we use a shared initial noise latent and stem-specific text inputs to generate synchronized multi-stem outputs in one pass. We further expand our approach to enable one-pass conditional multi-stem generation and stem-wise activity controls to empower users to iteratively generate and orchestrate the temporal layering of a mix. We benchmark our results on multiple open-source stem evaluation sets and show that Stemphonic produces higher-quality outputs while accelerating the full mix generation process by 25 to 50%. Demos at: https://stemphonic-demo.vercel.app.

39

Pretraining A Large Language Model using Distributed GPUs: A Memory-Efficient Decentralized Paradigm

Feb 12
ByJinrui Zhang, Chaodong Xiao, Aoqi Wu, Xindong Zhang, Lei Zhang
2
1

Pretraining large language models (LLMs) typically requires centralized clusters with thousands of high-memory GPUs (e.g., H100/A100). Recent decentralized training methods reduce communication overhead by employing federated optimization; however, they still need to train the entire model on each node, remaining constrained by GPU memory limitations. In this work, we propose SParse Expert Synchronization (SPES), a memory-efficient decentralized framework for pretraining mixture-of-experts (MoE) LLMs. SPES trains only a subset of experts per node, substantially lowering the memory footprint. Each node updates its local experts and periodically synchronizes with other nodes, eliminating full-parameter transmission while ensuring efficient knowledge sharing. To accelerate convergence, we introduce an expert-merging warm-up strategy, where experts exchange knowledge early in training, to rapidly establish foundational capabilities. With SPES, we train a 2B-parameter MoE LLM using 16 standalone 48GB GPUs over internet connections, which achieves competitive performance with centrally trained LLMs under similar computational budgets. We further demonstrate scalability by training a 7B model from scratch and a 9B model upcycled from a dense checkpoint, both of which match prior centralized baselines. Our code is available at https://github.com/zjr2000/SPES.

40

Detecting RLVR Training Data via Structural Convergence of Reasoning

Feb 12
ByHongbo Zhang, Yue Yang, Jianhao Yan, Guangsheng Bao, Yue Zhang, Yue Zhang
1
1

Reinforcement learning with verifiable rewards (RLVR) is central to training modern reasoning models, but the undisclosed training data raises concerns about benchmark contamination. Unlike pretraining methods, which optimize models using token-level probabilities, RLVR fine-tunes models based on reward feedback from self-generated reasoning trajectories, making conventional likelihood-based detection methods less effective. We show that RLVR induces a distinctive behavioral signature: prompts encountered during RLVR training result in more rigid and similar generations, while unseen prompts retain greater diversity. We introduce Min-kNN Distance, a simple black-box detector that quantifies this collapse by sampling multiple completions for a given prompt and computing the average of the k smallest nearest-neighbor edit distances. Min-kNN Distance requires no access to the reference model or token probabilities. Experiments across multiple RLVR-trained reasoning models show that Min-kNN Distance reliably distinguishes RL-seen examples from unseen ones and outperforms existing membership inference and RL contamination detection baselines.

Feb 12
Feb 13