ChatPaper.aiChatPaper.ai
Home

arXiv

HuggingFace

PricingAccountWorkSpace

•
•

•
•

•
•

•
•

•
•

Footer

Company name

ChatPaper.ai: Your advanced AI reading assistant.

Contact us: hi@pomodiary.com

X (Twitter)Discord

Products

  • AI Search
  • AI Mind Map
  • Arxiv Summary
  • Huggingface Summary

Support

  • FAQ
  • Contact

Company

  • Blog
  • Privacy Policy
  • Terms of Service

Available Languages

  • 🇬🇧English
  • 🇨🇳中文简体
  • 🇭🇰繁體中文
  • 🇯🇵日本語
  • 🇰🇷한국어
  • 🇩🇪Deutsch
  • 🇫🇷Français
  • 🇷🇺Русский
  • 🇪🇸Español

© 2025 chatpaper.ai All rights reserved.

AI Research Papers Daily

Daily curated AI research papers with translations

1

Can LLMs Clean Up Your Mess? A Survey of Application-Ready Data Preparation with LLMs

Jan 22
ByWei Zhou, Jun Zhou, Haoyu Wang, Zhenghao Li, Qikang He, Shaokun Han, Guoliang Li, Xuanhe Zhou, Yeye He, Chunwei Liu, Zirui Tang, Bin Wang, Shen Tang, Kai Zuo, Yuyu Luo, Zhenzhe Zheng, Conghui He, Jingren Zhou, Fan Wu
127
2

Data preparation aims to denoise raw datasets, uncover cross-dataset relationships, and extract valuable insights from them, which is essential for a wide range of data-centric applications. Driven by (i) rising demands for application-ready data (e.g., for analytics, visualization, decision-making), (ii) increasingly powerful LLM techniques, and (iii) the emergence of infrastructures that facilitate flexible agent construction (e.g., using Databricks Unity Catalog), LLM-enhanced methods are rapidly becoming a transformative and potentially dominant paradigm for data preparation. By investigating hundreds of recent literature works, this paper presents a systematic review of this evolving landscape, focusing on the use of LLM techniques to prepare data for diverse downstream tasks. First, we characterize the fundamental paradigm shift, from rule-based, model-specific pipelines to prompt-driven, context-aware, and agentic preparation workflows. Next, we introduce a task-centric taxonomy that organizes the field into three major tasks: data cleaning (e.g., standardization, error processing, imputation), data integration (e.g., entity matching, schema matching), and data enrichment (e.g., data annotation, profiling). For each task, we survey representative techniques, and highlight their respective strengths (e.g., improved generalization, semantic understanding) and limitations (e.g., the prohibitive cost of scaling LLMs, persistent hallucinations even in advanced agents, the mismatch between advanced methods and weak evaluation). Moreover, we analyze commonly used datasets and evaluation metrics (the empirical part). Finally, we discuss open research challenges and outline a forward-looking roadmap that emphasizes scalable LLM-data systems, principled designs for reliable agentic workflows, and robust evaluation protocols.

2

daVinci-Dev: Agent-native Mid-training for Software Engineering

Jan 26
ByJi Zeng, Dayuan Fu, Tiantian Mi, Yumin Zhuang, Yaxing Huang, Xuefeng Li, Lyumanshan Ye, Muhang Xie, Qishuo Hua, Zhen Huang, Mohan Jiang, Hanning Wang, Jifan Lin, Yang Xiao, Jie Sun, Yunze Wu, Pengfei Liu
104
2

Recently, the frontier of Large Language Model (LLM) capabilities has shifted from single-turn code generation to agentic software engineering-a paradigm where models autonomously navigate, edit, and test complex repositories. While post-training methods have become the de facto approach for code agents, **agentic mid-training**-mid-training (MT) on large-scale data that mirrors authentic agentic workflows-remains critically underexplored due to substantial resource requirements, despite offering a more scalable path to instilling foundational agentic behaviors than relying solely on expensive reinforcement learning. A central challenge in realizing effective agentic mid-training is the distribution mismatch between static training data and the dynamic, feedback-rich environment of real development. To address this, we present a systematic study of agentic mid-training, establishing both the data synthesis principles and training methodology for effective agent development at scale. Central to our approach is **agent-native data**-supervision comprising two complementary types of trajectories: **contextually-native trajectories** that preserve the complete information flow an agent experiences, offering broad coverage and diversity; and **environmentally-native trajectories** collected from executable repositories where observations stem from actual tool invocations and test executions, providing depth and interaction authenticity. We verify the model's agentic capabilities on `SWE-Bench Verified`. We demonstrate our superiority over the previous open software engineering mid-training recipe `Kimi-Dev` under two post-training settings with an aligned base model and agentic scaffold, while using less than half mid-training tokens (73.1B). Besides relative advantage, our best performing 32B and 72B models achieve **56.1%** and **58.5%** resolution rates, respectively, which are ...

3

The Script is All You Need: An Agentic Framework for Long-Horizon Dialogue-to-Cinematic Video Generation

Jan 25
ByChenyu Mu, Xin He, Qu Yang, Wanshun Chen, Jiadi Yao, Huang Liu, Zihao Yi, Bo Zhao, Xingyu Chen, Ruotian Ma, Fanghua Ye, Erkun Yang, Cheng Deng, Zhaopeng Tu, Xiaolong Li, Linus
46
3

Recent advances in video generation have produced models capable of synthesizing stunning visual content from simple text prompts. However, these models struggle to generate long-form, coherent narratives from high-level concepts like dialogue, revealing a ``semantic gap'' between a creative idea and its cinematic execution. To bridge this gap, we introduce a novel, end-to-end agentic framework for dialogue-to-cinematic-video generation. Central to our framework is ScripterAgent, a model trained to translate coarse dialogue into a fine-grained, executable cinematic script. To enable this, we construct ScriptBench, a new large-scale benchmark with rich multimodal context, annotated via an expert-guided pipeline. The generated script then guides DirectorAgent, which orchestrates state-of-the-art video models using a cross-scene continuous generation strategy to ensure long-horizon coherence. Our comprehensive evaluation, featuring an AI-powered CriticAgent and a new Visual-Script Alignment (VSA) metric, shows our framework significantly improves script faithfulness and temporal fidelity across all tested video models. Furthermore, our analysis uncovers a crucial trade-off in current SOTA models between visual spectacle and strict script adherence, providing valuable insights for the future of automated filmmaking.

4

Scientific Image Synthesis: Benchmarking, Methodologies, and Downstream Utility

Jan 17
ByHonglin Lin, Chonghan Qin, Zheng Liu, Qizhi Pei, Yu Li, Zhanping Zhong, Xin Gao, Yanfeng Wang, Conghui He, Lijun Wu
34
2

While synthetic data has proven effective for improving scientific reasoning in the text domain, multimodal reasoning remains constrained by the difficulty of synthesizing scientifically rigorous images. Existing Text-to-Image (T2I) models often produce outputs that are visually plausible yet scientifically incorrect, resulting in a persistent visual-logic divergence that limits their value for downstream reasoning. Motivated by recent advances in next-generation T2I models, we conduct a systematic study of scientific image synthesis across generation paradigms, evaluation, and downstream use. We analyze both direct pixel-based generation and programmatic synthesis, and propose ImgCoder, a logic-driven framework that follows an explicit "understand - plan - code" workflow to improve structural precision. To rigorously assess scientific correctness, we introduce SciGenBench, which evaluates generated images based on information utility and logical validity. Our evaluation reveals systematic failure modes in pixel-based models and highlights a fundamental expressiveness-precision trade-off. Finally, we show that fine-tuning Large Multimodal Models (LMMs) on rigorously verified synthetic scientific images yields consistent reasoning gains, with potential scaling trends analogous to the text domain, validating high-fidelity scientific synthesis as a viable path to unlocking massive multimodal reasoning capabilities.

5

Elastic Attention: Test-time Adaptive Sparsity Ratios for Efficient Transformers

Jan 24
ByZecheng Tang, Quantong Qiu, Yi Yang, Zhiyi Hong, Haiya Xiang, Kebin Liu, Qingqing Dang, Juntao Li, Min Zhang
26
1

The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.

6

iFSQ: Improving FSQ for Image Generation with 1 Line of Code

Jan 23
ByBin Lin, Zongjian Li, Yuwei Niu, Kaixiong Gong, Yunyang Ge, Yunlong Lin, Mingzhe Zheng, JianWei Zhang, Miles Yang, Zhao Zhong, Liefeng Bo, Li Yuan
24
1

The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ

7

Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability

Jan 26
ByShobhita Sundaram, John Quan, Ariel Kwiatkowski, Kartik Ahuja, Yann Ollivier, Julia Kempe
22
1

Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.

8

Self-Refining Video Sampling

Jan 26
BySangwon Jang, Taekyung Ki, Jaehyeong Jo, Saining Xie, Jaehong Yoon, Sung Ju Hwang
15
2

Modern video generators still struggle with complex physical dynamics, often falling short of physical realism. Existing approaches address this using external verifiers or additional training on augmented data, which is computationally expensive and still limited in capturing fine-grained motion. In this work, we present self-refining video sampling, a simple method that uses a pre-trained video generator trained on large-scale datasets as its own self-refiner. By interpreting the generator as a denoising autoencoder, we enable iterative inner-loop refinement at inference time without any external verifier or additional training. We further introduce an uncertainty-aware refinement strategy that selectively refines regions based on self-consistency, which prevents artifacts caused by over-refinement. Experiments on state-of-the-art video generators demonstrate significant improvements in motion coherence and physics alignment, achieving over 70\% human preference compared to the default sampler and guidance-based sampler.

9

VIBEVOICE-ASR Technical Report

Jan 26
ByZhiliang Peng, Jianwei Yu, Yaoyao Chang, Zilong Wang, Li Dong, Yingbo Hao, Yujie Tu, Chenyu Yang, Wenhui Wang, Songchen Xu, Yutao Sun, Hangbo Bao, Weijiang Xu, Yi Zhu, Zehua Wang, Ting Song, Yan Xia, Zewen Chi, Shaohan Huang, Liang Wang, Chuang Ding, Shuai Wang, Xie Chen, Furu Wei
11
1

This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.

10

CGPT: Cluster-Guided Partial Tables with LLM-Generated Supervision for Table Retrieval

Jan 22
ByTsung-Hsiang Chou, Chen-Jui Yu, Shui-Hsiang Hsu, Yao-Chung Fan
10
1

General-purpose embedding models have demonstrated strong performance in text retrieval but remain suboptimal for table retrieval, where highly structured content leads to semantic compression and query-table mismatch. Recent LLM-based retrieval augmentation methods mitigate this issue by generating synthetic queries, yet they often rely on heuristic partial-table selection and seldom leverage these synthetic queries as supervision to improve the embedding model. We introduce CGPT, a training framework that enhances table retrieval through LLM-generated supervision. CGPT constructs semantically diverse partial tables by clustering table instances using K-means and sampling across clusters to broaden semantic coverage. An LLM then generates synthetic queries for these partial tables, which are used in hard-negative contrastive fine-tuning to refine the embedding model. Experiments across four public benchmarks (MimoTable, OTTQA, FetaQA, and E2E-WTQ) show that CGPT consistently outperforms retrieval baselines, including QGpT, with an average R@1 improvement of 16.54 percent. In a unified multi-domain corpus setting, CGPT further demonstrates strong cross-domain generalization and remains effective even when using smaller LLMs for synthetic query generation. These results indicate that semantically guided partial-table construction, combined with contrastive training from LLM-generated supervision, provides an effective and scalable paradigm for large-scale table retrieval. Our code is available at https://github.com/yumeow0122/CGPT.

11

DeepPlanning: Benchmarking Long-Horizon Agentic Planning with Verifiable Constraints

Jan 26
ByYinger Zhang, Shutong Jiang, Renhao Li, Jianhong Tu, Yang Su, Lianghao Deng, Xudong Guo, Chenxu Lv, Junyang Lin
10
1

While agent evaluation has shifted toward long-horizon tasks, most benchmarks still emphasize local, step-level reasoning rather than the global constrained optimization (e.g., time and financial budgets) that demands genuine planning ability. Meanwhile, existing LLM planning benchmarks underrepresent the active information gathering and fine-grained local constraints typical of real-world settings. To address this, we introduce DeepPlanning, a challenging benchmark for practical long-horizon agent planning. It features multi-day travel planning and multi-product shopping tasks that require proactive information acquisition, local constrained reasoning, and global constrained optimization. Evaluations on DeepPlanning show that even frontier agentic LLMs struggle with these problems, highlighting the importance of reliable explicit reasoning patterns and parallel tool use for achieving better effectiveness-efficiency trade-offs. Error analysis further points to promising directions for improving agentic LLMs over long planning horizons. We open-source the code and data to support future research.

12

STAR: Semantic Table Representation with Header-Aware Clustering and Adaptive Weighted Fusion

Jan 22
ByShui-Hsiang Hsu, Tsung-Hsiang Chou, Chen-Jui Yu, Yao-Chung Fan
8
1

Table retrieval is the task of retrieving the most relevant tables from large-scale corpora given natural language queries. However, structural and semantic discrepancies between unstructured text and structured tables make embedding alignment particularly challenging. Recent methods such as QGpT attempt to enrich table semantics by generating synthetic queries, yet they still rely on coarse partial-table sampling and simple fusion strategies, which limit semantic diversity and hinder effective query-table alignment. We propose STAR (Semantic Table Representation), a lightweight framework that improves semantic table representation through semantic clustering and weighted fusion. STAR first applies header-aware K-means clustering to group semantically similar rows and selects representative centroid instances to construct a diverse partial table. It then generates cluster-specific synthetic queries to comprehensively cover the table's semantic space. Finally, STAR employs weighted fusion strategies to integrate table and query embeddings, enabling fine-grained semantic alignment. This design enables STAR to capture complementary information from structured and textual sources, improving the expressiveness of table representations. Experiments on five benchmarks show that STAR achieves consistently higher Recall than QGpT on all datasets, demonstrating the effectiveness of semantic clustering and adaptive weighted fusion for robust table representation. Our code is available at https://github.com/adsl135789/STAR.

13

AR-Omni: A Unified Autoregressive Model for Any-to-Any Generation

Jan 25
ByDongjie Cheng, Ruifeng Yuan, Yongqi Li, Runyang You, Wenjie Wang, Liqiang Nie, Lei Zhang, Wenjie Li
7
1

Real-world perception and interaction are inherently multimodal, encompassing not only language but also vision and speech, which motivates the development of "Omni" MLLMs that support both multimodal inputs and multimodal outputs. While a sequence of omni MLLMs has emerged, most existing systems still rely on additional expert components to achieve multimodal generation, limiting the simplicity of unified training and inference. Autoregressive (AR) modeling, with a single token stream, a single next-token objective, and a single decoder, is an elegant and scalable foundation in the text domain. Motivated by this, we present AR-Omni, a unified any-to-any model in the autoregressive paradigm without any expert decoders. AR-Omni supports autoregressive text and image generation, as well as streaming speech generation, all under a single Transformer decoder. We further address three practical issues in unified AR modeling: modality imbalance via task-aware loss reweighting, visual fidelity via a lightweight token-level perceptual alignment loss for image tokens, and stability-creativity trade-offs via a finite-state decoding mechanism. Empirically, AR-Omni achieves strong quality across three modalities while remaining real-time, achieving a 0.88 real-time factor for speech generation.

14

Paying Less Generalization Tax: A Cross-Domain Generalization Study of RL Training for LLM Agents

Jan 26
ByZhihan Liu, Lin Guan, Yixin Nie, Kai Zhang, Zhuoqun Hao, Lin Chen, Asli Celikyilmaz, Zhaoran Wang, Na Zhang
7
1

Generalist LLM agents are often post-trained on a narrow set of environments but deployed across far broader, unseen domains. In this work, we investigate the challenge of agentic post-training when the eventual test domains are unknown. Specifically, we analyze which properties of reinforcement learning (RL) environments and modeling choices have the greatest influence on out-of-domain performance. First, we identify two environment axes that strongly correlate with cross-domain generalization: (i) state information richness, i.e., the amount of information for the agent to process from the state, and (ii) planning complexity, estimated via goal reachability and trajectory length under a base policy. Notably, domain realism and text-level similarity are not the primary factors; for instance, the simple grid-world domain Sokoban leads to even stronger generalization in SciWorld than the more realistic ALFWorld. Motivated by these findings, we further show that increasing state information richness alone can already effectively improve cross-domain robustness. We propose a randomization technique, which is low-overhead and broadly applicable: add small amounts of distractive goal-irrelevant features to the state to make it richer without altering the task. Beyond environment-side properties, we also examine several modeling choices: (a) SFT warmup or mid-training helps prevent catastrophic forgetting during RL but undermines generalization to domains that are not included in the mid-training datamix; and (b) turning on step-by-step thinking during RL, while not always improving in-domain performance, plays a crucial role in preserving generalization.

15

DRPG (Decompose, Retrieve, Plan, Generate): An Agentic Framework for Academic Rebuttal

Jan 26
ByPeixuan Han, Yingjie Yu, Jingjun Xu, Jiaxuan You
6
1

Despite the growing adoption of large language models (LLMs) in scientific research workflows, automated support for academic rebuttal, a crucial step in academic communication and peer review, remains largely underexplored. Existing approaches typically rely on off-the-shelf LLMs or simple pipelines, which struggle with long-context understanding and often fail to produce targeted and persuasive responses. In this paper, we propose DRPG, an agentic framework for automatic academic rebuttal generation that operates through four steps: Decompose reviews into atomic concerns, Retrieve relevant evidence from the paper, Plan rebuttal strategies, and Generate responses accordingly. Notably, the Planner in DRPG reaches over 98% accuracy in identifying the most feasible rebuttal direction. Experiments on data from top-tier conferences demonstrate that DRPG significantly outperforms existing rebuttal pipelines and achieves performance beyond the average human level using only an 8B model. Our analysis further demonstrates the effectiveness of the planner design and its value in providing multi-perspective and explainable suggestions. We also showed that DRPG works well in a more complex multi-round setting. These results highlight the effectiveness of DRPG and its potential to provide high-quality rebuttal content and support the scaling of academic discussions. Codes for this work are available at https://github.com/ulab-uiuc/DRPG-RebuttalAgent.

16

Agentic Very Long Video Understanding

Jan 26
ByAniket Rege, Arka Sadhu, Yuliang Li, Kejie Li, Ramya Korlakai Vinayak, Yuning Chai, Yong Jae Lee, Hyo Jin Kim
6
1

The advent of always-on personal AI assistants, enabled by all-day wearable devices such as smart glasses, demands a new level of contextual understanding, one that goes beyond short, isolated events to encompass the continuous, longitudinal stream of egocentric video. Achieving this vision requires advances in long-horizon video understanding, where systems must interpret and recall visual and audio information spanning days or even weeks. Existing methods, including large language models and retrieval-augmented generation, are constrained by limited context windows and lack the ability to perform compositional, multi-hop reasoning over very long video streams. In this work, we address these challenges through EGAgent, an enhanced agentic framework centered on entity scene graphs, which represent people, places, objects, and their relationships over time. Our system equips a planning agent with tools for structured search and reasoning over these graphs, as well as hybrid visual and audio search capabilities, enabling detailed, cross-modal, and temporally coherent reasoning. Experiments on the EgoLifeQA and Video-MME (Long) datasets show that our method achieves state-of-the-art performance on EgoLifeQA (57.5%) and competitive performance on Video-MME (Long) (74.1%) for complex longitudinal video understanding tasks.

17

SAGE: Steerable Agentic Data Generation for Deep Search with Execution Feedback

Jan 26
ByFangyuan Xu, Rujun Han, Yanfei Chen, Zifeng Wang, I-Hung Hsu, Jun Yan, Vishy Tirumalashetty, Eunsol Choi, Tomas Pfister, Chen-Yu Lee
5
1

Deep search agents, which aim to answer complex questions requiring reasoning across multiple documents, can significantly speed up the information-seeking process. Collecting human annotations for this application is prohibitively expensive due to long and complex exploration trajectories. We propose an agentic pipeline that automatically generates high quality, difficulty-controlled deep search question-answer pairs for a given corpus and a target difficulty level. Our pipeline, SAGE, consists of a data generator which proposes QA pairs and a search agent which attempts to solve the generated question and provide execution feedback for the data generator. The two components interact over multiple rounds to iteratively refine the question-answer pairs until they satisfy the target difficulty level. Our intrinsic evaluation shows SAGE generates questions that require diverse reasoning strategies, while significantly increases the correctness and difficulty of the generated data. Our extrinsic evaluation demonstrates up to 23% relative performance gain on popular deep search benchmarks by training deep search agents with our synthetic data. Additional experiments show that agents trained on our data can adapt from fixed-corpus retrieval to Google Search at inference time, without further training.

18

IVRA: Improving Visual-Token Relations for Robot Action Policy with Training-Free Hint-Based Guidance

Jan 22
ByJongwoo Park, Kanchana Ranasinghe, Jinhyeok Jang, Cristina Mata, Yoo Sung Jang, Michael S Ryoo
5
1

Many Vision-Language-Action (VLA) models flatten image patches into a 1D token sequence, weakening the 2D spatial cues needed for precise manipulation. We introduce IVRA, a lightweight, training-free method that improves spatial understanding by exploiting affinity hints already available in the model's built-in vision encoder, without requiring any external encoder or retraining. IVRA selectively injects these affinity signals into a language-model layer in which instance-level features reside. This inference-time intervention realigns visual-token interactions and better preserves geometric structure while keeping all model parameters fixed. We demonstrate the generality of IVRA by applying it to diverse VLA architectures (LLaRA, OpenVLA, and FLOWER) across simulated benchmarks spanning both 2D and 3D manipulation (VIMA and LIBERO) and on various real-robot tasks. On 2D VIMA, IVRA improves average success by +4.2% over the baseline LLaRA in a low-data regime. On 3D LIBERO, it yields consistent gains over the OpenVLA and FLOWER baselines, including improvements when baseline accuracy is near saturation (96.3% to 97.1%). All code and models will be released publicly. Visualizations are available at: jongwoopark7978.github.io/IVRA

19

SkyReels-V3 Technique Report

Jan 24
ByDebang Li, Zhengcong Fei, Tuanhui Li, Yikun Dou, Zheng Chen, Jiangping Yang, Mingyuan Fan, Jingtao Xu, Jiahua Wang, Baoxuan Gu, Mingshan Chang, Yuqiang Xie, Binjie Mao, Youqiang Zhang, Nuo Pang, Hao Zhang, Yuzhe Jin, Zhiheng Xu, Dixuan Lin, Guibin Chen, Yahui Zhou
5
0

Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.

20

Least-Loaded Expert Parallelism: Load Balancing An Imbalanced Mixture-of-Experts

Jan 23
ByXuan-Phi Nguyen, Shrey Pandit, Austin Xu, Caiming Xiong, Shafiq Joty
5
1

Mixture-of-Experts (MoE) models are typically pre-trained with explicit load-balancing constraints to ensure statistically balanced expert routing. Despite this, we observe that even well-trained MoE models exhibit significantly imbalanced routing. This behavior is arguably natural-and even desirable - as imbalanced routing allows models to concentrate domain-specific knowledge within a subset of experts. Expert parallelism (EP) is designed to scale MoE models by distributing experts across multiple devices, but with a less-discussed assumption of balanced routing. Under extreme imbalance, EP can funnel a disproportionate number of tokens to a small number of experts, leading to compute- and memory-bound failures on overloaded devices during post-training or inference, where explicit load balancing is often inapplicable. We propose Least-Loaded Expert Parallelism (LLEP), a novel EP algorithm that dynamically reroutes excess tokens and associated expert parameters from overloaded devices to underutilized ones. This ensures that all devices complete their workloads within the minimum collective latency while respecting memory constraints. Across different model scales, LLEP achieves up to 5x speedup and 4x reduction in peak memory usage compared to standard EP. This enables faster and higher-throughput post-training and inference, with ~1.9x faster for gpt-oss-120b. We support our method with extensive theoretical analysis and comprehensive empirical evaluations, including ablation studies. These results illuminate key trade-offs and enable a principled framework for hardware-specific hyper-parameter tuning to achieve optimal performance.

21

End-to-End Joint ASR and Speaker Role Diarization with Child-Adult Interactions

Jan 25
ByAnfeng Xu, Tiantian Feng, Somer Bishop, Catherine Lord, Shrikanth Narayanan
4
1

Accurate transcription and speaker diarization of child-adult spoken interactions are crucial for developmental and clinical research. However, manual annotation is time-consuming and challenging to scale. Existing automated systems typically rely on cascaded speaker diarization and speech recognition pipelines, which can lead to error propagation. This paper presents a unified end-to-end framework that extends the Whisper encoder-decoder architecture to jointly model ASR and child-adult speaker role diarization. The proposed approach integrates: (i) a serialized output training scheme that emits speaker tags and start/end timestamps, (ii) a lightweight frame-level diarization head that enhances speaker-discriminative encoder representations, (iii) diarization-guided silence suppression for improved temporal precision, and (iv) a state-machine-based forced decoding procedure that guarantees structurally valid outputs. Comprehensive evaluations on two datasets demonstrate consistent and substantial improvements over two cascaded baselines, achieving lower multi-talker word error rates and demonstrating competitive diarization accuracy across both Whisper-small and Whisper-large models. These findings highlight the effectiveness and practical utility of the proposed joint modeling framework for generating reliable, speaker-attributed transcripts of child-adult interactions at scale. The code and model weights are publicly available

22

One Adapts to Any: Meta Reward Modeling for Personalized LLM Alignment

Jan 26
ByHongru Cai, Yongqi Li, Tiezheng Yu, Fengbin Zhu, Wenjie Wang, Fuli Feng, Wenjie Li
4
1

Alignment of Large Language Models (LLMs) aims to align outputs with human preferences, and personalized alignment further adapts models to individual users. This relies on personalized reward models that capture user-specific preferences and automatically provide individualized feedback. However, developing these models faces two critical challenges: the scarcity of feedback from individual users and the need for efficient adaptation to unseen users. We argue that addressing these constraints requires a paradigm shift from fitting data to learn user preferences to learn the process of preference adaptation. To realize this, we propose Meta Reward Modeling (MRM), which reformulates personalized reward modeling as a meta-learning problem. Specifically, we represent each user's reward model as a weighted combination of base reward functions, and optimize the initialization of these weights using a Model-Agnostic Meta-Learning (MAML)-style framework to support fast adaptation under limited feedback. To ensure robustness, we introduce the Robust Personalization Objective (RPO), which places greater emphasis on hard-to-learn users during meta optimization. Extensive experiments on personalized preference datasets validate that MRM enhances few-shot personalization, improves user robustness, and consistently outperforms baselines.

23

A Mechanistic View on Video Generation as World Models: State and Dynamics

Jan 22
ByLuozhou Wang, Zhifei Chen, Yihua Du, Dongyu Yan, Wenhang Ge, Guibao Shen, Xinli Xu, Leyi Wu, Man Chen, Tianshuo Xu, Peiran Ren, Xin Tao, Pengfei Wan, Ying-Cong Chen
3
1

Large-scale video generation models have demonstrated emergent physical coherence, positioning them as potential world models. However, a gap remains between contemporary "stateless" video architectures and classic state-centric world model theories. This work bridges this gap by proposing a novel taxonomy centered on two pillars: State Construction and Dynamics Modeling. We categorize state construction into implicit paradigms (context management) and explicit paradigms (latent compression), while dynamics modeling is analyzed through knowledge integration and architectural reformulation. Furthermore, we advocate for a transition in evaluation from visual fidelity to functional benchmarks, testing physical persistence and causal reasoning. We conclude by identifying two critical frontiers: enhancing persistence via data-driven memory and compressed fidelity, and advancing causality through latent factor decoupling and reasoning-prior integration. By addressing these challenges, the field can evolve from generating visually plausible videos to building robust, general-purpose world simulators.

24

Diffusion In Diffusion: Reclaiming Global Coherence in Semi-Autoregressive Diffusion

Jan 20
ByLinrui Ma, Yufei Cui, Kai Han, Yunhe Wang
3
2

One of the most compelling features of global discrete diffusion language models is their global bidirectional contextual capability. However, existing block-based diffusion studies tend to introduce autoregressive priors, which, while offering benefits, can cause models to lose this global coherence at the macro level. To regain global contextual understanding while preserving the advantages of the semi-autoregressive paradigm, we propose Diffusion in Diffusion, a 'draft-then-refine' framework designed to overcome the irreversibility and myopia problems inherent in block diffusion models. Our approach first employs block diffusion to generate rapid drafts using small blocks, then refines these drafts through global bidirectional diffusion with a larger bidirectional receptive field. We utilize snapshot confidence remasking to identify the most critical tokens that require modification, and apply mix-scale training to expand the block diffusion model's global capabilities. Empirical results demonstrate that our approach sets a new benchmark for discrete diffusion models on the OpenWebText dataset. Using only 26% of the fine-tuning budget of baseline models, we reduce generative perplexity from 25.7 to 21.9, significantly narrowing the performance gap with autoregressive models.

25

TSRBench: A Comprehensive Multi-task Multi-modal Time Series Reasoning Benchmark for Generalist Models

Jan 26
ByFangxu Yu, Xingang Guo, Lingzhi Yuan, Haoqiang Kang, Hongyu Zhao, Lianhui Qin, Furong Huang, Bin Hu, Tianyi Zhou
3
1

Time series data is ubiquitous in real-world scenarios and crucial for critical applications ranging from energy management to traffic control. Consequently, the ability to reason over time series is a fundamental skill for generalist models to solve practical problems. However, this dimension is notably absent from existing benchmarks of generalist models. To bridge this gap, we introduce TSRBench, a comprehensive multi-modal benchmark designed to stress-test the full spectrum of time series reasoning capabilities. TSRBench features: i) a diverse set of 4125 problems from 14 domains, and is categorized into 4 major dimensions: Perception, Reasoning, Prediction, and Decision-Making. ii) 15 tasks from the 4 dimensions evaluating essential reasoning capabilities (e.g., numerical reasoning). Through extensive experiments, we evaluated over 30 leading proprietary and open-source LLMs, VLMs, and TSLLMs within TSRBench. Our findings reveal that: i) scaling laws hold for perception and reasoning but break down for prediction; ii) strong reasoning does not guarantee accurate context-aware forecasting, indicating a decoupling between semantic understanding and numerical prediction; and iii) despite the complementary nature of textual and visual represenations of time series as inputs, current multimodal models fail to effectively fuse them for reciprocal performance gains. TSRBench provides a standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance generalist models. Our code and dataset are available at https://tsrbench.github.io/.

26

PingPong: A Natural Benchmark for Multi-Turn Code-Switching Dialogues

Jan 24
ByMohammad Rifqi Farhansyah, Hanif Muhammad Zhafran, Farid Adilazuarda, Shamsuddeen Hassan Muhammad, Maryam Ibrahim Mukhtar, Nedjma Ousidhoum, Genta Indra Winata, Ayu Purwarianti, Alham Fikri Aji
2
1

Code-switching is a widespread practice among the world's multilingual majority, yet few benchmarks accurately reflect its complexity in everyday communication. We present PingPong, a benchmark for natural multi-party code-switching dialogues covering five language-combination variations, some of which are trilingual. Our dataset consists of human-authored conversations among 2 to 4 participants covering authentic, multi-threaded structures where replies frequently reference much earlier points in the dialogue. We demonstrate that our data is significantly more natural and structurally diverse than machine-generated alternatives, offering greater variation in message length, speaker dominance, and reply distance. Based on these dialogues, we define three downstream tasks: Question Answering, Dialogue Summarization, and Topic Classification. Evaluations of several state-of-the-art language models on PingPong reveal that performance remains limited on code-switched inputs, underscoring the urgent need for more robust NLP systems capable of addressing the intricacies of real-world multilingual discourse.

27

Plug-and-Play Benchmarking of Reinforcement Learning Algorithms for Large-Scale Flow Control

Jan 21
ByJannis Becktepe, Aleksandra Franz, Nils Thuerey, Sebastian Peitz
2
1

Reinforcement learning (RL) has shown promising results in active flow control (AFC), yet progress in the field remains difficult to assess as existing studies rely on heterogeneous observation and actuation schemes, numerical setups, and evaluation protocols. Current AFC benchmarks attempt to address these issues but heavily rely on external computational fluid dynamics (CFD) solvers, are not fully differentiable, and provide limited 3D and multi-agent support. To overcome these limitations, we introduce FluidGym, the first standalone, fully differentiable benchmark suite for RL in AFC. Built entirely in PyTorch on top of the GPU-accelerated PICT solver, FluidGym runs in a single Python stack, requires no external CFD software, and provides standardized evaluation protocols. We present baseline results with PPO and SAC and release all environments, datasets, and trained models as public resources. FluidGym enables systematic comparison of control methods, establishes a scalable foundation for future research in learning-based flow control, and is available at https://github.com/safe-autonomous-systems/fluidgym.

28

The Side Effects of Being Smart: Safety Risks in MLLMs' Multi-Image Reasoning

Jan 20
ByRenmiao Chen, Yida Lu, Shiyao Cui, Xuan Ouyang, Victor Shea-Jay Huang, Shumin Zhang, Chengwei Pan, Han Qiu, Minlie Huang
2
1

As Multimodal Large Language Models (MLLMs) acquire stronger reasoning capabilities to handle complex, multi-image instructions, this advancement may pose new safety risks. We study this problem by introducing MIR-SafetyBench, the first benchmark focused on multi-image reasoning safety, which consists of 2,676 instances across a taxonomy of 9 multi-image relations. Our extensive evaluations on 19 MLLMs reveal a troubling trend: models with more advanced multi-image reasoning can be more vulnerable on MIR-SafetyBench. Beyond attack success rates, we find that many responses labeled as safe are superficial, often driven by misunderstanding or evasive, non-committal replies. We further observe that unsafe generations exhibit lower attention entropy than safe ones on average. This internal signature suggests a possible risk that models may over-focus on task solving while neglecting safety constraints. Our code and data are available at https://github.com/thu-coai/MIR-SafetyBench.

29

UI Remix: Supporting UI Design Through Interactive Example Retrieval and Remixing

Jan 26
ByJunling Wang, Hongyi Lan, Xiaotian Su, Mustafa Doga Dogan, April Yi Wang
2
1

Designing user interfaces (UIs) is a critical step when launching products, building portfolios, or personalizing projects, yet end users without design expertise often struggle to articulate their intent and to trust design choices. Existing example-based tools either promote broad exploration, which can cause overwhelm and design drift, or require adapting a single example, risking design fixation. We present UI Remix, an interactive system that supports mobile UI design through an example-driven design workflow. Powered by a multimodal retrieval-augmented generation (MMRAG) model, UI Remix enables iterative search, selection, and adaptation of examples at both the global (whole interface) and local (component) level. To foster trust, it presents source transparency cues such as ratings, download counts, and developer information. In an empirical study with 24 end users, UI Remix significantly improved participants' ability to achieve their design goals, facilitated effective iteration, and encouraged exploration of alternative designs. Participants also reported that source transparency cues enhanced their confidence in adapting examples. Our findings suggest new directions for AI-assisted, example-driven systems that empower end users to design with greater control, trust, and openness to exploration.

30

Less Is More -- Until It Breaks: Security Pitfalls of Vision Token Compression in Large Vision-Language Models

Jan 17
ByXiaomei Zhang, Zhaoxi Zhang, Leo Yu Zhang, Yanjun Zhang, Guanhong Tao, Shirui Pan
2
1

Visual token compression is widely adopted to improve the inference efficiency of Large Vision-Language Models (LVLMs), enabling their deployment in latency-sensitive and resource-constrained scenarios. However, existing work has mainly focused on efficiency and performance, while the security implications of visual token compression remain largely unexplored. In this work, we first reveal that visual token compression substantially degrades the robustness of LVLMs: models that are robust under uncompressed inference become highly vulnerable once compression is enabled. These vulnerabilities are state-specific; failure modes emerge only in the compressed setting and completely disappear when compression is disabled, making them particularly hidden and difficult to diagnose. By analyzing the key stages of the compression process, we identify instability in token importance ranking as the primary cause of this robustness degradation. Small and imperceptible perturbations can significantly alter token rankings, leading the compression mechanism to mistakenly discard task-critical information and ultimately causing model failure. Motivated by this observation, we propose a Compression-Aware Attack to systematically study and exploit this vulnerability. CAA directly targets the token selection mechanism and induces failures exclusively under compressed inference. We further extend this approach to more realistic black-box settings and introduce Transfer CAA, where neither the target model nor the compression configuration is accessible. We further evaluate potential defenses and find that they provide only limited protection. Extensive experiments across models, datasets, and compression methods show that visual token compression significantly undermines robustness, revealing a previously overlooked efficiency-security trade-off.

31

Masked Depth Modeling for Spatial Perception

Jan 25
ByBin Tan, Changjiang Sun, Xiage Qin, Hanat Adai, Zelin Fu, Tianxiang Zhou, Han Zhang, Yinghao Xu, Xing Zhu, Yujun Shen, Nan Xue
1
1

Spatial visual perception is a fundamental requirement in physical-world applications like autonomous driving and robotic manipulation, driven by the need to interact with 3D environments. Capturing pixel-aligned metric depth using RGB-D cameras would be the most viable way, yet it usually faces obstacles posed by hardware limitations and challenging imaging conditions, especially in the presence of specular or texture-less surfaces. In this work, we argue that the inaccuracies from depth sensors can be viewed as "masked" signals that inherently reflect underlying geometric ambiguities. Building on this motivation, we present LingBot-Depth, a depth completion model which leverages visual context to refine depth maps through masked depth modeling and incorporates an automated data curation pipeline for scalable training. It is encouraging to see that our model outperforms top-tier RGB-D cameras in terms of both depth precision and pixel coverage. Experimental results on a range of downstream tasks further suggest that LingBot-Depth offers an aligned latent representation across RGB and depth modalities. We release the code, checkpoint, and 3M RGB-depth pairs (including 2M real data and 1M simulated data) to the community of spatial perception.

32

MortalMATH: Evaluating the Conflict Between Reasoning Objectives and Emergency Contexts

Jan 26
ByEtienne Lanzeray, Stephane Meilliez, Malo Ruelle, Damien Sileo
1
1

Large Language Models are increasingly optimized for deep reasoning, prioritizing the correct execution of complex tasks over general conversation. We investigate whether this focus on calculation creates a "tunnel vision" that ignores safety in critical situations. We introduce MortalMATH, a benchmark of 150 scenarios where users request algebra help while describing increasingly life-threatening emergencies (e.g., stroke symptoms, freefall). We find a sharp behavioral split: generalist models (like Llama-3.1) successfully refuse the math to address the danger. In contrast, specialized reasoning models (like Qwen-3-32b and GPT-5-nano) often ignore the emergency entirely, maintaining over 95 percent task completion rates while the user describes dying. Furthermore, the computational time required for reasoning introduces dangerous delays: up to 15 seconds before any potential help is offered. These results suggest that training models to relentlessly pursue correct answers may inadvertently unlearn the survival instincts required for safe deployment.

33

Interp3D: Correspondence-aware Interpolation for Generative Textured 3D Morphing

Jan 20
ByXiaolu Liu, Yicong Li, Qiyuan He, Jiayin Zhu, Wei Ji, Angela Yao, Jianke Zhu
1
1

Textured 3D morphing seeks to generate smooth and plausible transitions between two 3D assets, preserving both structural coherence and fine-grained appearance. This ability is crucial not only for advancing 3D generation research but also for practical applications in animation, editing, and digital content creation. Existing approaches either operate directly on geometry, limiting them to shape-only morphing while neglecting textures, or extend 2D interpolation strategies into 3D, which often causes semantic ambiguity, structural misalignment, and texture blurring. These challenges underscore the necessity to jointly preserve geometric consistency, texture alignment, and robustness throughout the transition process. To address this, we propose Interp3D, a novel training-free framework for textured 3D morphing. It harnesses generative priors and adopts a progressive alignment principle to ensure both geometric fidelity and texture coherence. Starting from semantically aligned interpolation in condition space, Interp3D enforces structural consistency via SLAT (Structured Latent)-guided structure interpolation, and finally transfers appearance details through fine-grained texture fusion. For comprehensive evaluations, we construct a dedicated dataset, Interp3DData, with graded difficulty levels and assess generation results from fidelity, transition smoothness, and plausibility. Both quantitative metrics and human studies demonstrate the significant advantages of our proposed approach over previous methods. Source code is available at https://github.com/xiaolul2/Interp3D.

34

HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs

Jan 26
ByXinyue Zeng, Junhong Lin, Yujun Yan, Feng Guo, Liang Shi, Jun Wu, Dawei Zhou
1
1

The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.

35

RouteMoA: Dynamic Routing without Pre-Inference Boosts Efficient Mixture-of-Agents

Jan 26
ByJize Wang, Han Wu, Zhiyuan You, Yiming Song, Yijun Wang, Zifei Shan, Yining Li, Songyang Zhang, Xinyi Le, Cailian Chen, Xinping Guan, Dacheng Tao
1
1

Mixture-of-Agents (MoA) improves LLM performance through layered collaboration, but its dense topology raises costs and latency. Existing methods employ LLM judges to filter responses, yet still require all models to perform inference before judging, failing to cut costs effectively. They also lack model selection criteria and struggle with large model pools, where full inference is costly and can exceed context limits. To address this, we propose RouteMoA, an efficient mixture-of-agents framework with dynamic routing. It employs a lightweight scorer to perform initial screening by predicting coarse-grained performance from the query, narrowing candidates to a high-potential subset without inference. A mixture of judges then refines these scores through lightweight self- and cross-assessment based on existing model outputs, providing posterior correction without additional inference. Finally, a model ranking mechanism selects models by balancing performance, cost, and latency. RouteMoA outperforms MoA across varying tasks and model pool sizes, reducing cost by 89.8% and latency by 63.6% in the large-scale model pool.

36

TensorLens: End-to-End Transformer Analysis via High-Order Attention Tensors

Jan 25
ByIdo Andrew Atad, Itamar Zimerman, Shahar Katz, Lior Wolf
1
1

Attention matrices are fundamental to transformer research, supporting a broad range of applications including interpretability, visualization, manipulation, and distillation. Yet, most existing analyses focus on individual attention heads or layers, failing to account for the model's global behavior. While prior efforts have extended attention formulations across multiple heads via averaging and matrix multiplications or incorporated components such as normalization and FFNs, a unified and complete representation that encapsulates all transformer blocks is still lacking. We address this gap by introducing TensorLens, a novel formulation that captures the entire transformer as a single, input-dependent linear operator expressed through a high-order attention-interaction tensor. This tensor jointly encodes attention, FFNs, activations, normalizations, and residual connections, offering a theoretically coherent and expressive linear representation of the model's computation. TensorLens is theoretically grounded and our empirical validation shows that it yields richer representations than previous attention-aggregation methods. Our experiments demonstrate that the attention tensor can serve as a powerful foundation for developing tools aimed at interpretability and model understanding. Our code is attached as a supplementary.

37

Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests

Jan 24
ByJingjie Ning, João Coelho, Yibo Kong, Yunfan Long, Bruno Martins, João Magalhães, Jamie Callan, Chenyan Xiong
0
1

LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.

Jan 26
Jan 27
Jan 28