VideoPoet:一個用於零樣本視頻生成的大型語言模型
VideoPoet: A Large Language Model for Zero-Shot Video Generation
December 21, 2023
作者: Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, Yong Cheng, Ming-Chang Chiu, Josh Dillon, Irfan Essa, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, David Ross, Grant Schindler, Mikhail Sirotenko, Kihyuk Sohn, Krishna Somandepalli, Huisheng Wang, Jimmy Yan, Ming-Hsuan Yang, Xuan Yang, Bryan Seybold, Lu Jiang
cs.AI
摘要
我們介紹了 VideoPoet,一種能夠從各種條件信號中合成高質量視頻並配有相應音頻的語言模型。VideoPoet採用僅解碼器的Transformer架構,處理多模態輸入,包括圖像、視頻、文本和音頻。訓練協議遵循大型語言模型(LLMs)的方式,包括兩個階段:預訓練和任務特定適應。在預訓練期間,VideoPoet在自回歸Transformer框架中結合多模態生成目標。預訓練的LLM作為基礎,可適應各種視頻生成任務。我們提供了實證結果,展示了該模型在零樣本視頻生成方面的最新能力,特別突出了VideoPoet生成高保真運動的能力。項目頁面:http://sites.research.google/videopoet/
English
We present VideoPoet, a language model capable of synthesizing high-quality
video, with matching audio, from a large variety of conditioning signals.
VideoPoet employs a decoder-only transformer architecture that processes
multimodal inputs -- including images, videos, text, and audio. The training
protocol follows that of Large Language Models (LLMs), consisting of two
stages: pretraining and task-specific adaptation. During pretraining, VideoPoet
incorporates a mixture of multimodal generative objectives within an
autoregressive Transformer framework. The pretrained LLM serves as a foundation
that can be adapted for a range of video generation tasks. We present empirical
results demonstrating the model's state-of-the-art capabilities in zero-shot
video generation, specifically highlighting VideoPoet's ability to generate
high-fidelity motions. Project page: http://sites.research.google/videopoet/