生成式人工智慧遇上3D:在AIGC時代的文本轉3D研究概況
Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era
May 10, 2023
作者: Chenghao Li, Chaoning Zhang, Atish Waghwase, Lik-Hang Lee, Francois Rameau, Yang Yang, Sung-Ho Bae, Choong Seon Hong
cs.AI
摘要
生成式人工智慧(AIGC,又稱AI生成內容)在過去幾年取得了顯著進展,其中以文字引導的內容生成最為實用,因為它使人類指導與AIGC之間的互動成為可能。由於文字轉圖像以及三維建模技術(如NeRF)的發展,文字轉三維已成為新興且極具活力的研究領域。我們的工作對文字轉三維進行了首次且全面的調查,以幫助對這個方向感興趣的讀者迅速了解其快速發展。首先,我們介紹了三維數據表示,包括歐幾里得數據和非歐幾里得數據。在此基礎上,我們介紹了各種基礎技術,並總結了近期作品如何結合這些基礎技術來實現令人滿意的文字轉三維。此外,我們總結了文字轉三維技術在各種應用中的應用,包括頭像生成、紋理生成、形狀轉換和場景生成。
English
Generative AI (AIGC, a.k.a. AI generated content) has made remarkable
progress in the past few years, among which text-guided content generation is
the most practical one since it enables the interaction between human
instruction and AIGC. Due to the development in text-to-image as well 3D
modeling technologies (like NeRF), text-to-3D has become a newly emerging yet
highly active research field. Our work conducts the first yet comprehensive
survey on text-to-3D to help readers interested in this direction quickly catch
up with its fast development. First, we introduce 3D data representations,
including both Euclidean data and non-Euclidean data. On top of that, we
introduce various foundation technologies as well as summarize how recent works
combine those foundation technologies to realize satisfactory text-to-3D.
Moreover, we summarize how text-to-3D technology is used in various
applications, including avatar generation, texture generation, shape
transformation, and scene generation.