DA^2:任意方向的深度感知
DA^2: Depth Anything in Any Direction
September 30, 2025
作者: Haodong Li, Wangguangdong Zheng, Jing He, Yuhao Liu, Xin Lin, Xin Yang, Ying-Cong Chen, Chunchao Guo
cs.AI
摘要
全景图像拥有完整的视场角(360°×180°),相较于透视图像提供了更为全面的视觉描述。得益于这一特性,全景深度估计在三维视觉领域正获得越来越多的关注。然而,由于全景数据的稀缺,以往的方法往往局限于域内设定,导致零样本泛化能力较差。此外,由于全景图像固有的球面畸变,许多方法依赖于透视分割(如立方体贴图),这导致了效率的次优化。为应对这些挑战,我们提出了DA²:任意方向深度估计,这是一种精确、零样本可泛化且完全端到端的全景深度估计器。具体而言,为扩大全景数据规模,我们引入了一个数据整理引擎,用于从透视图像生成高质量的全景深度数据,并创建了约543K对全景RGB-深度数据,使总数达到约607K。为进一步缓解球面畸变,我们提出了SphereViT,它显式利用球面坐标来强化全景图像特征中的球面几何一致性,从而提升了性能。在多个数据集上的综合基准测试清晰地展示了DA²的领先性能,在AbsRel指标上平均比最强的零样本基线提升了38%。令人惊讶的是,DA²甚至超越了先前的域内方法,凸显了其卓越的零样本泛化能力。此外,作为一个端到端解决方案,DA²相比基于融合的方法展现出更高的效率。代码及整理的全景数据将一并公开。项目页面:https://depth-any-in-any-dir.github.io/。
English
Panorama has a full FoV (360^circtimes180^circ), offering a more
complete visual description than perspective images. Thanks to this
characteristic, panoramic depth estimation is gaining increasing traction in 3D
vision. However, due to the scarcity of panoramic data, previous methods are
often restricted to in-domain settings, leading to poor zero-shot
generalization. Furthermore, due to the spherical distortions inherent in
panoramas, many approaches rely on perspective splitting (e.g., cubemaps),
which leads to suboptimal efficiency. To address these challenges, we propose
DA^{2}: Depth Anything in
Any Direction, an accurate, zero-shot generalizable, and
fully end-to-end panoramic depth estimator. Specifically, for scaling up
panoramic data, we introduce a data curation engine for generating high-quality
panoramic depth data from perspective, and create sim543K panoramic
RGB-depth pairs, bringing the total to sim607K. To further mitigate the
spherical distortions, we present SphereViT, which explicitly leverages
spherical coordinates to enforce the spherical geometric consistency in
panoramic image features, yielding improved performance. A comprehensive
benchmark on multiple datasets clearly demonstrates DA^{2}'s SoTA
performance, with an average 38% improvement on AbsRel over the strongest
zero-shot baseline. Surprisingly, DA^{2} even outperforms prior in-domain
methods, highlighting its superior zero-shot generalization. Moreover, as an
end-to-end solution, DA^{2} exhibits much higher efficiency over fusion-based
approaches. Both the code and the curated panoramic data will be released.
Project page: https://depth-any-in-any-dir.github.io/.