ChatPaper.aiChatPaper

走向開放式視覺品質比較

Towards Open-ended Visual Quality Comparison

February 26, 2024
作者: Haoning Wu, Hanwei Zhu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Annan Wang, Wenxiu Sun, Qiong Yan, Xiaohong Liu, Guangtao Zhai, Shiqi Wang, Weisi Lin
cs.AI

摘要

相對設置(例如成對選擇、列表排序)已被廣泛應用於圖像質量評估(IQA)的各種主觀研究中,因為它在不同觀察者之間固有地標準化評估標準,並提供更清晰明確的反應。在這項工作中,我們將新興的大型多模型(LMMs)的邊緣擴展到開放式設置,以進一步推進視覺質量比較,這種設置:1)可以回答有關質量比較的開放範圍問題;2)可以提供超出直接答案的詳細推理。為此,我們提出了 Co-Instruct。為了訓練這種首創的開源開放式視覺質量比較器,我們從兩個來源收集了 Co-Instruct-562K 數據集:(a)LMM-合併的單圖像質量描述,(b)GPT-4V對未標記數據的“教師”回應。此外,為了更好地評估這種設置,我們提出了 MICBench,這是針對 LMMs 的多圖像比較的第一個基準。我們展示了 Co-Instruct 不僅比最先進的開源 LMMs 實現了30%更高的優越準確性,而且在現有相關基準和提出的 MICBench 上也優於 GPT-4V(其教師)。我們的模型已發表在 https://huggingface.co/q-future/co-instruct。
English
Comparative settings (e.g. pairwise choice, listwise ranking) have been adopted by a wide range of subjective studies for image quality assessment (IQA), as it inherently standardizes the evaluation criteria across different observers and offer more clear-cut responses. In this work, we extend the edge of emerging large multi-modality models (LMMs) to further advance visual quality comparison into open-ended settings, that 1) can respond to open-range questions on quality comparison; 2) can provide detailed reasonings beyond direct answers. To this end, we propose the Co-Instruct. To train this first-of-its-kind open-source open-ended visual quality comparer, we collect the Co-Instruct-562K dataset, from two sources: (a) LMM-merged single image quality description, (b) GPT-4V "teacher" responses on unlabeled data. Furthermore, to better evaluate this setting, we propose the MICBench, the first benchmark on multi-image comparison for LMMs. We demonstrate that Co-Instruct not only achieves 30% higher superior accuracy than state-of-the-art open-source LMMs, but also outperforms GPT-4V (its teacher), on both existing related benchmarks and the proposed MICBench. Our model is published at https://huggingface.co/q-future/co-instruct.
PDF191December 15, 2024