歸納矩匹配
Inductive Moment Matching
March 10, 2025
作者: Linqi Zhou, Stefano Ermon, Jiaming Song
cs.AI
摘要
擴散模型和流匹配方法雖能生成高品質樣本,但在推理時速度緩慢,且將其蒸餾為少步模型常導致不穩定性和大量調參需求。為解決這些權衡問題,我們提出了歸納矩匹配(Inductive Moment Matching, IMM),這是一種新型生成模型,適用於單步或少量步數的採樣,並採用單階段訓練程序。與蒸餾不同,IMM無需預訓練初始化及優化兩個網絡;與一致性模型相比,IMM保證了分佈層面的收斂性,並在多種超參數和標準模型架構下保持穩定。IMM在ImageNet-256x256上僅用8步推理便以1.99的FID超越了擴散模型,並在CIFAR-10上從零開始訓練的模型中,達到了2步FID為1.98的頂尖水平。
English
Diffusion models and Flow Matching generate high-quality samples but are slow
at inference, and distilling them into few-step models often leads to
instability and extensive tuning. To resolve these trade-offs, we propose
Inductive Moment Matching (IMM), a new class of generative models for one- or
few-step sampling with a single-stage training procedure. Unlike distillation,
IMM does not require pre-training initialization and optimization of two
networks; and unlike Consistency Models, IMM guarantees distribution-level
convergence and remains stable under various hyperparameters and standard model
architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID
using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98
on CIFAR-10 for a model trained from scratch.Summary
AI-Generated Summary