Aster:比现有方法快20倍以上的自主科学发现
Aster: Autonomous Scientific Discovery over 20x Faster Than Existing Methods
February 3, 2026
作者: Emmett Bicker
cs.AI
摘要
我们推出Aster——一款能够以超越现有框架20倍以上速度运行的自主科学发现人工智能体。该智能体在给定任务、初始程序及程序性能评估脚本后,能持续迭代优化程序,往往能实现新的突破性性能表现。Aster通过大幅减少新发现所需的迭代次数,将可处理问题领域扩展至包含长评估周期的任务(例如耗时数小时的机器学习训练任务)。
我们将Aster应用于数学、GPU内核工程、生物学、神经科学及语言模型训练等多个领域,具体包括:埃尔德什最小重叠问题、TriMul内核优化、单细胞分析去噪问题、训练神经活动预测模型以在ZAPBench基准测试中取得优异表现,以及NanoGPT极速挑战赛。除ZAPBench任务中仅用不到1/190的计算量就达到最佳人工解决方案水平外,Aster在其他所有任务中均实现了最先进的成果。
Aster可通过asterlab.ai网站的在线界面和API进行访问。
English
We introduce Aster, an AI agent for autonomous scientific discovery capable of operating over 20 times faster than existing frameworks. Given a task, an initial program, and a script to evaluate the performance of the program, Aster iteratively improves the program, often leading to new state-of-the-art performances. Aster's significant reduction in the number of iterations required for novel discovery expands the domain of tractable problems to include tasks with long evaluation durations, such as multi-hour machine learning training runs.
We applied Aster to problems in mathematics, GPU kernel engineering, biology, neuroscience, and language model training. More specifically: the Erdos minimum overlap problem, optimizing the TriMul kernel, a single-cell analysis denoising problem, training a neural activity prediction model to perform well on ZAPBench, and the NanoGPT Speedrun Competition. Aster attains SOTA results in every task, except for ZAPBench, where it matches the performance of the best human solution with less than 1/190th of the compute.
Aster is accessible via a web interface and API at asterlab.ai.