ChatPaper.aiChatPaper

加速TarFlow採樣之GS-Jacobi迭代法

Accelerate TarFlow Sampling with GS-Jacobi Iteration

May 19, 2025
作者: Ben Liu, Zhen Qin
cs.AI

摘要

影像生成模型已獲得廣泛應用。以TarFlow模型為例,其結合了Transformer架構與正規化流模型,在多項基準測試中達到了頂尖水準。然而,由於注意力機制的因果形式需要序列計算,TarFlow的採樣過程極為緩慢。本文展示,通過一系列優化策略,利用高斯-賽德爾-雅可比(簡稱GS-Jacobi)迭代法,可大幅加速TarFlow的採樣過程。具體而言,我們發現TarFlow模型中的各區塊具有不同的重要性:少數區塊在影像生成任務中扮演主要角色,而其他區塊貢獻相對較小;部分區塊對初始值敏感且易於數值溢出,而另一些則相對穩健。基於這兩大特性,我們提出了收斂排名指標(CRM)與初始猜測指標(IGM):CRM用於判斷TarFlow區塊是“簡單”(在少數迭代內收斂)還是“困難”(需要更多迭代);IGM則用於評估迭代初始值的好壞。在四個TarFlow模型上的實驗表明,GS-Jacobi採樣在保持生成影像質量(以FID衡量)的同時,能顯著提升採樣效率,於Img128cond、AFHQ、Img64uncond及Img64cond中分別實現了4.53倍、5.32倍、2.96倍及2.51倍的加速,且未降低FID分數或樣本質量。相關代碼與檢查點可於https://github.com/encoreus/GS-Jacobi_for_TarFlow獲取。
English
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow

Summary

AI-Generated Summary

PDF71May 20, 2025