LLaMAX2:您的翻譯增強模型在推理任務中同樣表現出色
LLaMAX2: Your Translation-Enhanced Model also Performs Well in Reasoning
October 10, 2025
作者: Changjiang Gao, Zixian Huang, Jingyang Gong, Shujian Huang, Lei Li, Fei Yuan
cs.AI
摘要
通用的大型語言模型(LLMs)在推理方面表現出色,但針對翻譯優化的模型在推理任務上卻顯得力不從心。為解決這一問題,我們提出了一種新穎的翻譯增強方案,該方案從指令模型入手,並僅在平行數據上進行層選擇性調優。遵循這一流程,我們推出了Qwen3-XPlus模型,該模型在高資源和低資源語言上的翻譯性能均顯著提升,在低資源語言如斯瓦希里語中,達到了15+的spBLEU和40+的xComet評分。值得注意的是,僅使用小型平行數據集進行訓練,Qwen3-XPlus在7項多語言任務上平均提升了1+分,同時在15個流行的推理數據集上保持了與Qwen3指令模型相當的熟練度。這項工作為多語言增強提供了一種有前景的方法,顯著降低了複雜性,並提高了對更廣泛語言的易用性。代碼和模型均已公開。
English
General Large Language Models (LLMs) excel in reasoning, but those enhanced
for translation struggle with reasoning tasks. To address this, we propose a
novel translationenhanced recipe that begins with instruct models and applies
layer-selective tuning only on parallel data. Following this pipeline, we
introduce the Qwen3-XPlus models, which demonstrate significant improvements in
translation performance across both high- and lowresource languages, achieving
15+ spBLEU and 40+ xComet in low-resource languages, like Swahili.
Interestingly, training only with small parallel datasets, Qwen3-XPlus achieves
an average improvement of 1+ points on 7 multilingual tasks while maintaining
proficiency comparable to the Qwen3 instruct model in 15 popular reasoning
datasets. This work offers a promising approach to multilingual enhancement,
significantly reducing complexity and enhancing accessibility for a wider range
of languages. The code and model are publicly available.